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aBstract

In this paper, an inverse analysis of the mechanical parameters of existing layered pavements was performed. 
An artificial neural network (ANN) was used to approximate the response of the numerical pavement 
model to the input parameters. Two methods were presented. In the first method, the ANN directly maps 
the inverse relationship between the pavement surface deflection and mechanical parameters. In the second 
method, the approximated model was used in the classical back-calculation of pavements by a procedure 
of minimising the differences between the model response (now a neural network) and field measurements 
obtained from the falling weight deflectometer (FWD) test. Only one parameter of each pavement layer, 
the Young’s modulus, was identified. It was found that the identification is not unambiguous. This means 
a given pavement deflection can be observed with different sets of layer stiffness moduli. However, 
the average stiffness of the layers is always identified with high accuracy.

keywords: artificial neural network, inverse problems, numerical model, parameter identification, falling 
weight deflectometer, field measurement

introduction

The road pavement structure is made up of a set of layers whose task is to transfer the loads from the wheels 
of vehicles to the ground, while ensuring an adequate level of convenience and traffic safety. The most 
important performance characteristic in the Polish evaluation system is the bearing capacity of the pavement, 
i.e. it is the ability to bear loads from traffic. Assessment of the mechanical properties of the existing multi-layer 
pavements based on the non-destructive load test of the top surface is currently the most widely used 
method. They are determined on the basis of measured, by static or dynamic methods, vertical displacements 
(deflections) of the pavement structure under a known load. A standardised device called a falling weight 
deflectometer (FWD) is used to perform such a test. Floor deflections are then caused by the impulse load from 
the falling weight. They are then measured at several points using geophones (a maximum of nine geophones) 
mounted on a rigid support, as part of a special-purpose vehicle (Figs 1 and 2). This process has an impact 
character and, as a result, the recorded pavement displacement represents the dynamic response to the load. 
On the other hand, in design practice, static pavement models in the form of layered elastic half-spaces are 
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most often used. In current practice, researchers use methods of transforming the displacements obtained 
from the dynamic test into their static substitutes (Ruta, Krawczyk & Szydło, 2015). This paper emphasises 
the evaluation of the use of ANNs to identify pavement parameters. The FWD test was the inspiration for 
the conducted numerical experiments. In this paper, theoretically calculated (for the assigned known elasticity 
moduli) displacements were used as ‘experimental’ pseudostatic data from the FWD test.

fig. 1. Dynatest® – falling weight deflectometer

Source: own work.

FWD
load

geophones

deflection

fig. 2. Deflection bowl from FWD test

Source: Wesołowski and Blacha (2014).

A set of measured deflections is usually named the deflection bowl. These bowls are used in back analysis 
to identify parameters of computational models of road pavements. This process is called back calculation. 
The reaction of the pavement to the applied load, i.e. the measured deflections, determines the values of material 
properties that should be assigned to specified layers separately in the theoretical model of the pavement. 
As mentioned above, the theoretical model for the FWD test is usually an elastic layered half-space, statically 
loaded over a small area at the point of the falling mass (Yoder & Witczak, 1975; Ruta et al., 2015). In the case 
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of rigid pavements, the theoretical model may also be a layered plate supported on an elastic subgrade, 
e.g. the Winkler–Pasternak model (Boso & Lefik, 2012). Another method for the theoretical model of the pavement 
is a numerical formulation using, for example, the finite element method (FEM). The latter approach gives 
the greatest freedom of use in selecting the model parameters and has been used for the purposes of this article.

Classic backward calculations leading to the determination of the mechanical parameters of pavement 
layers consist in minimising the sum-of-squares differences between the measured and theoretical pavement 
deflections. Which can be written as follows:

  2
1

min ,
i

m

k i kp k
u p d



  
 
  (1)

where:
pi – assumed parameters of the theoretical model,
i – layer index,
m – number of reading points,
uk(pi) – calculated theoretical deflection at the k-th surface point,
dk – measured deflection at the k-th surface point.

Any variables that have an influence on the solution can be model parameters, such as: elastic modules 
(Young’s moduli) of layers Ej, Poisson’s ratios vj, layer thicknesses hj, interface conditions between layers ks, j 
(j – layer index), and others. With the elastic formulation of the problem, assuming the continuity of the material 
between the layers and the assumed thickness of the pavement layers, only the moduli Ej have a significant 
influence on the deformation of the pavement system. Then, problem (1) can be written as follows:

  2
1
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j

m

k j kE k
u E d
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 
  (2)

The optimisation problems mentioned above require frequent model evaluation when searching for 
the minimum of the objective function (calculation of deflections uk). Depending on the complexity 
of the mechanical model, it can be a time-consuming process. Artificial neural networks (ANN) can be used 
as an input-output algorithm where the first set of data is the mechanical parameters of the pavement structure, 
and a second set of data is the mechanical response of the pavement under a known load, including measured 
deflections at given points on the pavement. When the first set is used as input data and the second set as output 
data, an ANN is being used as a numerical approximator that learns to simulate and solve the engineering 
problem. When the input data is the second dataset, and the output is the first set of data, the ANN is being 
used as a universal approximator of the inverse problem.

In this research, two alternative methods of searching for the optimal parameters of the FEM numerical 
model of the layered pavement will be presented and tested for the problem (2). Feed-forward artificial neural 
networks were used for both algorithms (Wojciechowski, 2011; Boso & Lefik, 2012; Lefik & Boso, 2016). 
This approach allows for a massive speed boost in solving the parameter identification problem and leads 
to better recognition of the inverse problem under consideration. ANNs have been previously used to solve 
the inverse problem of pavement mechanical properties identification (Meier, 1995; Bredenhann & Ven, 
2004; Saltan & Terzi, 2005; Shahnazari, Tutunchian, Mashayekhi & Amini, 2012; Elbagalati, Elseifi, Gaspard 
& Zhang, 2017; Li & Wang, 2017; Li & Wang, 2018; Aubdulnibe & Jassim, 2019). In the literature on the subject, 
mostly examination of the first method is observed. The application and comparison of the two alternative 
approaches using the same ANN training and testing data is considered a main contribution of this paper.
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artificial neural networks

Artificial neural networks were based on the anatomical, physiological and biochemical knowledge of the human 
brain that was available at the time. However, the developers of neural networks treated this knowledge 
as a source of inspiration, not as a model to be copied exactly. Therefore, the construction and operating 
principles of artificial neural networks used in practice are not a faithful reflection of the state of biological 
knowledge, even that somewhat outdated knowledge from a dozen years ago. The first widely known example 
of a built and interestingly functioning neuro-like network is the ‘Perceptron’ (Minsky & Papert, 1969). 
The performance of the perceptron was not satisfactory from the point of view of the fundamental purpose 
of the test: although the system learned the task of recognition, it could not cope with more complex signs, 
and it showed sensitivity to changes in the scale of the learned objects. Despite the diverse architectures used 
by artificial neural networks, the essence of their operation is still based on the concept of the Perceptron 
algorithm, composed of a single artificial neuron.

The artificial neuron building blocks used in networks architecture are, of course, highly simplified models 
of nerve cells found in nature. The construction of an artificial neuron is best illustrated by the diagram shown 
in Figure 3.
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y = f(s)…
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fig. 3. Overall structure of a simplified neuron: basic signals, weighting coefficients, aggregation of data in the first 
internal function of the neuron, additional parameter – bias, transfer function

Source: own work.

Artificial neurons are characterised by the presence of multiple inputs and a single output. The input signals 
xi (i = 0, 1, 2, ..., n)  and the output signal y can take only numerical values, most often in the range from 0 to 1, 
while the fact that they correspond to certain unit of information in the tasks solved by the network is the result 
of a special procedure. Artificial neurons perform certain actions on the signals they receive at the inputs, 
as a result of which they produce signals (only one for each individual neuron), which are present at their 
outputs and are transmitted further (either to other neurons or to the output of the network, as a solution 
to the problem presented). Thus, the task of the network, reduced to the functioning of its basic element, which 
is the neuron, is that it transforms input information xi into output y using rules derived from how it is built 
and what it has been taught. With each separate input of the neuron is an associated parameter called weight wi. 
This name means that it expresses the degree of importance of the information reaching the neuron with this 
particular input. These weights reflect the rather complex biochemical and bioelectrical processes occurring 
in the real synapses of biological neurons. The most important thing is that synaptic weights can be modified 
(i.e. have their values changed), which is the basis of network learning. The signal coming in with a particular 
input is first modified using the weight of the input. The most common modification is that the signal is simply 
multiplied by the weight of the given input, so that it already participates in further calculations in a modified 
form. Sometimes (not in all types of networks, but generally often), some additional component independent 
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of the input signals is added, called a bias in the literature. Bias is also subject to a learning process. The bias 
signal is of a constant value of 1. The role of bias is that, thanks to its presence, the properties of the neuron 
can be shaped much more freely during the learning process. The addition of a bias value allows you to change 
the 0 point of the function. The input signals are aggregated inside the neuron, which most often means that 
the corresponding signals are simply summed. The result of this process gives some auxiliary internal signal 
called a net value. Such a sum can sometimes be directly transferred to the output and treated as the neuron’s 
output signal. In more sophisticated networks, on the other hand, the output signal of a neuron is calculated 
using some nonlinear function, which is called a transfer function and usually is defined as f(s) or φ(s). 
The transfer function is commonly called the characteristics of the neuron. Various characteristics of the used 
activation functions are known: Sigmoid, threshold, linear, piecewise linear, threshold linear, Gaussian, tanh, 
and rectifying linear unit. The behaviour of the artificial neuron maximally resembles the behaviour of a real 
biological neuron (sigmoidal function), but they can be selected in such a way as to ensure maximum efficiency 
of the calculations carried out by the neural network. 

So far, a single artificial neuron has been described. A neural algorithm is a network of artificial neurons 
organised in interconnected layers called an ANN. Such networks are built to eliminate the major drawback 
of the single neuron ‘Perceptron’ algorithm – the ability to classify only linear data. An example of a classical 
ANN is presented in Figure 4. At the beginning of the network is the input layer (LI), which, after receiving 
input signals x0

i (i = 0, 1, 2, ..., n), generally does not process them but distributes them – which means that 
it distributes them to all the neurons xj

i (i = 0, 1, 2, ..., n; j = 0, 1, 2, ..., k) of the hidden layers [with deep 
learning, the internal hidden layers (L1–LK) are observed]. Hidden layer neurons use the properties of a single 
artificial neuron described above. Thus, they process the input signal into an output signal yi (i = 0, 1, 2, ..., n) 
and transmit it to the output layer (LO). In the classical ANN architecture, each neuron of the selected layer 
is connected to all neurons of the previous and next layers. This network architecture is often described 
as a feedforward structure. Feedforward networks are structures in which there is a well-defined direction 
of signal flow, from input to output on which the final result is given. Only during network training is the data 
flow reversed. Such networks are the most widely used and useful (Tadeusiewicz, 1993; Lefik & Schrefler, 
2001; Shahin, Jaksa & Maier, 2001; Wojciechowski, Lefik, 2004; Boso, Lefik & Schrefler, 2012; Momeni, 
Nazir, Jahed Armaghani & Maizir, 2015; Alwattar & Mian, 2019; Vahab, Shahbodagh, Haghighat & Khalili, 
2023). This type of network will also be used in this paper.
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fig. 4. Overall classical ANN architecture

Source: own work.
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Training of the network is required so that it can correctly perform the operations intended for it. Training 
the ANN consists in finding the optimal values of the weights, so that the inputs belonging to the training data 
are processed and transmitted through the layers, resulting in outputs that fit well-known outputs (the ground 
truth) (Galbusera, Casaroli & Bassani, 2019). For training in the case of supervised learning, a set of labelled 
numerical data is used, divided into training, validation and testing subsets. The literature offers several 
proposals for dividing the dataset into the aforementioned subsets in different proportions. It is important 
that one data point can belong to one of the subsets. The training subset is used strictly to calculate weights 
with the use of backpropagation algorithms. The validation subset is used to adjust the net hyperparameters 
(e.g. learning rates, momentum). The test subset is used after the training process is completed, not for training 
the weights or adjusting the hyperparameters, but for assessing the model’s accuracy and efficiency.

For many years, no effective method for training multilayer networks was known, which is why the layers 
for which the error signal could not be determined were known in the literature as ‘hidden layers’. For 
this problem, the backpropagation algorithm turned out to be revolutionary. It consists of the fact that for 
the determined error δ(m)(j) occurring during the j-th step of the learning process in an m neuron, we can project 
this error backwards to all neurons whose signal were inputs to the m neuron. The number of comparisons 
carried out depends on the size of the training set, the assumed number of iterations, and the training process 
of the network. This is because there are no specific guidelines to determine the weight parameters without 
testing the algorithm each time for a given problem.

numerical model of pavement

formulation
The classical theory of an elastic half-space of a domain, e.g. a soil medium, describes the half-space 
as a homogeneous, infinite structure, limited on one side by a plane – the terrain surface. The layered half-
space is a structure composed of many layers with different mechanical properties and separated by planes 
parallel to the surface of the terrain. For a pavement structure, the typical direction is horizontal. Typical 
examples of layered structures are the pavements of airports, roads, highways, and parking lots, supported 
on a subgrade. The general model of the pavement supported on the ground is shown in Figure 5. Each layer 
has an infinite size in the horizontal direction and is defined by a finite thickness hj, Young’s modulus Ej 
and Poisson’s ratio vj, where j = 1, ..., n defines the number of the next layer. The last layer is described by 
the modulus of elasticity En and Poisson’s ratio vn and it has an infinite size in both the horizontal and vertical 
directions (hn → ∞).

fig. 5. Illustration of a flexible layered half-space model

Source: own work.
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Analytical solutions for a homogeneous and layered half-space are known and described in the literature 
on the subject for both cases of static and dynamic load (Boussinesq, 1885; Burmister, 1945; Lamb, 1997; 
Lin, Zhang, Liu & Wang, 2016). However, from the applied side, the analytical models are very simplified. 
They do not make it possible to take into account physical factors that can significantly affect the measured 
values of displacements, e.g. imperfect layer adhesion, material anisotropy, temperature gradient, non-linearity 
in the behaviour of the subgrade.

In this article, the pavement model was described numerically using the finite element method. It allows 
for advanced deformation analysis. However, the main aim of the study is to present and evaluate methods 
of identifying model parameters with the use of artificial neural networks. The aim is not to precisely reproduce 
the structure of the layered pavement, so the FEM model was limited to an elastic isotropic domain in a plane 
strain state. It was also assumed that only Young’s modulus would be identified due to the significant impact 
on deformation. Other important mechanical parameters, e.g. Poisson’s ratios and thicknesses for all layers, 
will be known, e.g. based on structural design.

Figure 6 shows a diagram of the considered model. The model’s layers correspond to the structure 
of the actual airport pavement (Nita, 2008). Therefore, the model consists of three structural concrete layers 
from the top, each with different stiffnesses. The fourth layer is natural soil. The extract of the data for 
the model is summarised in Table 1. 

fig. 6. Diagram of the considered layered pavement

Source: own work.

table 1.  Summary of data for the applied model of the layered pavement

Layer hj
[cm]

vj
[-]

Ej
[GPa]

L1 20 0.2 15.0‒45.0
L2 20 0.2 12.5‒37.5
L3 15 0.2 7.5‒22.5
L4 145 0.3 0.025‒0.075

Source: own work.

Due to the symmetry of the pavement model, only half of the geometry model was considered. 
The dimensions of the analysed area are l × h = 5 × 2 m. A static constant load was assumed on the top surface 
with a width of 30 cm and a value of 12,600 kPa. The value and range of the load correspond to the static vertical 
contact stresses apparent under the wheel of the Boeing 747-300 airplane (Wikipedia, 2023). As boundary 
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condition horizontal displacements are blocked on the axis of symmetry and on the right edge of the model, 
a full displacement lock is used at the bottom of the model.

Figure 7 shows the finite element mesh adopted for the analysed boundary problem. Six-node triangular 
elements were used. The edge size of an equilateral triangle is 5 cm at the top surface of the model, evenly 
increasing to 15 cm at the bottom surface. The FEM model and the calculations described below were 
performed using the fempy software (Wojciechowski, 2018).

fig. 7. Finite element mesh of the model

Source: own work.

Generation of data for ann training
For the model defined above, 100 sets of deformation modules Ej for the four layers were randomly generated. 
It was assumed that all other parameters of the model are invariant. The sampling was carried out using the Latin 
hypercube sampling (LHS) method, which is a statistical method of generating samples with a multivariate 
distribution (Mckay, Beckman & Conover, 2000). It ensures that the set of samples is representative 
of the given ranges of parameter variability (while the usual random sampling is just a collection of random 
numbers with no guarantees whatsoever). Then, calculations were performed for all the generated samples, 
registering uk deflections of the top surface at nine points 0, 30, 60, 90, 120, 150, 180, 210 and 240 cm from 
the axis of symmetry. In this way, data was obtained in sequence (Ej

(p), uk
(p)), where Ej

(p) – elasticity modules 
of the layers, uk

(p) – deflections of the top surface, p = 1, ..., 100; j = 1, ..., 4; k = 1, ..., 9. Selected calculation 
results are presented in Figures 8–10.

fig. 8. Deflections of the pavement recorded in reading points for 100 random sets of Ej modules of the layers

Source: own work.
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fig. 9. Vertical stresses for the selected set of modules

Source: own work.
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fig. 10. Horizontal stresses for the selected set of modules. In the area of the concrete pavement, the stress distribution 
characteristic for the slab resting on the elastic subgrade is visible

Source: own work.

identification of model parameters usinG ann

training of artificial neural network
The fast feed-forward artificial neural network is a universal approximator of multivalued functions of several 
variables (Burczyński, Beluch, Długosz, Orantek & Nowakowski, 2000; Burczynski, Beluch, Długosz, 
Orantek & Skrobol, 2006). If the input and output of the network is interpreted as an argument and image 
of a certain operator or function that the ANN approximates, respectively, the consistency of the output values 
with the expected values should be satisfied for an infinite number of all possible sets of arguments. To achieve 
this, the network parameters (weights) are selected by procedure of successive corrections in an iterative 
process called training or teaching the network. The training of the network minimises the difference between 
the ANN output signal and the target signal expected at the ANN output. A popular technique that can be 
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found in the literature is the minimisation of the sum of squared errors calculated for all output neurons and for 
all input patterns, and such a formulation was used in this article. The ANN weight optimisation procedure 
gives the desired effect when there is a clear correlation between the input and output data. At the same 
time, the ANN must be designed with an appropriate number of hidden neurons, adjusted to the complexity 
of the objective function being approximated and to the size of the training set. Having data from the FEM 
model evaluation for random parameter sets, i.e. having (Ej

(p), uk
(p)) pairs, it is possible to train a feed-forward 

artificial neural network both in order to approximate the inverse relations (deflections – modules) and direct 
relations (modules – deflections). In this article, the ffnet software (Wojciechowski, 2016) was used for 
this purpose, which enables ANN training with the use of advanced optimisation tools, with automatic 
selection of the number of epochs, learning parameters and criteria for the completion of the weight selection 
process. In this paper, sigmoidal functions were used in the neural network models, both in the hidden 
layers and in the output layer. Despite the possibility of using other activation functions, this function was 
deliberately chosen. The ffnet program makes it possible to use higher-order derivatives for calculations, 
which is guaranteed by the sigmoid function. For example, the ReLU function does not have a second-order 
derivative. For all examples in the paper, the root mean squared error (RMSE) cost function was used. 
The cost function characterises the effectiveness of the model on the training dataset. Loss functions express 
the discrepancy between the predictions of the trained model and the actual occurrences of the problem. 
If the deviation between the predicted and actual results is too large, then the loss function will have a very 
high value. To accelerate the training of the network, supporting algorithms – optimisation functions – are 
also used. Optimisers are algorithms or methods used to change neural network attributes, such as weights 
and learning speed, to reduce losses. Gradient descent is the simplest but most commonly used optimisation 
algorithm. In this paper, the gradient descent optimiser was used.

ann as direct approximator of the inverse relation

Method description
In this approach, an artificial neural network is defined and trained, directly mapping the inverse relationship 
between surface deflections and stiffness modules, which can be written as follows:

 1 , ,j j kE N u w   (3)

where:
 1 , ,j j kE N u w   – network output, i.e. approximated elastic modules,

 1 , ,j j kE N u w   – operator performed by ANN, 
uk – network input in the form of pavement deflections,

 1 , ,j j kE N u w   – network weights.

The trained ANN, therefore, has nine input neurons and four output neurons. The network architecture 
also consists of 10 hidden neurons in one layer. Network training was carried out on 95 sets of training data 
(training and validation sets), and the remaining five were used for network testing (test set). An example 
of the input and output data are presented in Table 2. The training therefore consisted in solving the following 
minimisation problem:

     95 4 2
1

1 1
min , .p p

j k jw p j
N u w E

 

 
 

 


  (4)
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table 2.  Example of inputs and outputs data for trained 9-10-4 ANN

Dataset
Input
[cm]

Output
[GPa]

D0 D30 D60 D90 D120 D150 D180 D210 D240 E1 E2 E3 E4

Training
2.15 2.12 2.03 1.92 1.78 1.63 1.47 1.30 1.14 33.75 29.48 19.10 0.03
1.42 1.3 1.29 1.18 1.05 0.91 0.76 0.62 0.49 19.98 31.91 15.32 0.07

Testing 1.37 1.32 1.23 1.12 0.99 0.85 0.71 0.57 0.44 16.75 26.86 17.28 0.07

Note: D0, D30, etc. denotes the deflection at the geophone at 0 mm, 30 mm, etc. from the load centreline. 

Source: own work.

After training the network, the identified values of the layer modules are obtained directly from the relation (3) 
by entering the values of the measured (test) deflection dk on the surface. Thus, the module-matching procedure 
described by the formula (2) is not performed. The advantage of this approach is the very fast parameter 
identification process. However, their optimality, depending only on the quality of the learning process (4), 
is not guaranteed. Usually, however, it is possible to obtain parameters close to optimal, with an accuracy 
sufficient for engineering applications.

Learning and identification results
The network with the 9-10-4 architecture was trained as described above for 95 training samples. Figures 11 
and 12 show the convergence results of the pattern modules and modules determined by the trained ANN for 
all 100 samples. The best fit is observed for the last layer – the subgrade (bottom right graph in Figure 11). 
Slightly poorer results are obtained for the remaining layers. It is worth noting that the fit of the test results 
does not deviate from the fit of the training data, which indicates that the ANN has been trained properly.

b 

c 

d 

sample 

sample 

sample 

a 

sample 

b 

c 

d 

sample 

sample 

sample 
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fig. 11. Results of training the ‘inverse’ network Nj
–1: (a) 1st layer, (b) 2nd layer, (c) 3rd layer, (d) 4th layer: target – 

reference values of modules, opt – module values identified by the trained ANN. The last five points of the graphs 
refer to the testing data

Source: own work.
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fig. 12. Response of the ‘inverse’ network versus reference of the modules: E1 (opt_0), E2 (opt_1) and E3 (opt_2). 
The points on the graph also contain test data

Source: own work.

Table 3 summarises the numerical identification results for the test samples. The average values 
of the modules for the model layers are also given. The differences in the computed and pattern modules 
do not exceed 15%, and the differences in the mean values do not exceed 5%. This indicates the ability 
of the network to correctly reproduce the averaged, effective properties of the layered pavement, even if 
the modules of the individual layers are determined with significant errors.

table 3.  Numerical compilation of the reference (target) and modules of successive layers of the model determined by 
the ANN (opt) for five test samples

Test 
Young’s 
moduli
[GPa]

E1 E2 E3 E4
Arithmetic 

mean
Harmonic 

mean

Weighted 
arithmetic 

mean

Weighted 
harmonic 

mean

1
opt 23.75889 15.49612 9.50824 0.06691 12.20754 0.26389 4.68713 0.09213

target 26.37433 13.31490 9.39255 0.06586 12.28691 0.25970 4.72112 0.09069

2
opt 23.32254 11.91731 13.42858 0.04248 12.17773 0.16849 4.56193 0.05854

target 21.91036 12.93881 13.07886 0.04399 11.99300 0.17443 4.49772 0.06061

3
opt 18.87684 14.21434 18.17562 0.06081 12.83190 0.24065 4.71638 0.08377

target 19.01810 15.04311 17.49291 0.06060 12.90368 0.23986 4.76203 0.08348

4
opt 39.26647 23.98959 18.17301 0.06916 20.37456 0.27432 7.73872 0.09529

target 37.61994 22.84971 18.06242 0.07037 19.65061 0.27902 7.45266 0.09696

5
opt 34.83376 11.86434 11.06079 0.04532 14.45105 0.17961 5.53222 0.06243

target 34.45835 12.87345 11.56119 0.04626 14.73481 0.18338 5.63380 0.06373

Source: own work.

In addition, the identified (opt) modules listed in Table 3 were used to perform calculations using 
the FEM model. The results are shown in Figure 13. The alignment of the reference (target) and identified (opt) 
deflections is qualitatively very good, with slight differences visible quantitatively, e.g. for Samples 2 and 5.
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fig. 13. Reference (target) and ANN identified (opt) deflections of the pavement for five test specimens

Source: own work.

ann as an approximator of the model response

Method description
This approach defines and trains an artificial neural network, mapping the relationship between 
the layer modules and pavement deflections. In other words, the ANN directly approximates the response 
of the FEM numerical model to the load for given material properties. It can be written as follows:

 , ,k k ju N E w   (5)

where:
 , ,k k ju N E w   – network output, i.e. approximate pavement deflections,

Nk – operator performed by ANN,
Ej – network input in the form of layer modules,

 , ,k k ju N E w   – net weight.

The trained ANN has four input and nine output neurons. The network architecture also consists of 10 hidden 
neurons in one layer. Network training was carried out on 95 training datasets (training and validation sets); 
the remaining five were used for network testing (test set). An example of the input and output data is presented 
in Table 4.

table 4.  Example of inputs and outputs data for trained 4-10-9 ANN

Dataset
Input
[cm]

Output
[GPa]

E1 E2 E3 E4 D0 D30 D60 D90 D120 D150 D180 D210 D240

Training
41.61 27.98 7.55 0.06 1.45 1.41 1.33 1.22 1.09 0.95 0.80 0.66 0.53
17.91 29.52 15.22 0.04 2.12 2.06 1.96 1.82 1.65 1.46 1.27 1.08 8.96

Testing 39.81 27.51 9.45 0.04 2.00 1.96 1.87 1.75 1.59 1.43 1.25 1.08 0.91

Note: D0, D30, etc. denote the deflection at the geophone at 0 mm, 30 mm, etc. from the load centreline.

Source: own work.



Góral, A. S., Wojciechowski, M. (2025). Joint application of the finite element method and artificial neural network in the identification 
of parameters of layered pavement. Acta Sci. Pol. Architectura, 24, 123–141, DOI: 10.22630/ASPA.2025.24.10

136 aspa.sggw.edu.pl

The training, therefore, consisted of solving the following minimisation problem:

     95 9 2

1 1
min , .p p

k j kw p k
N E w u

 

 
 

 


  (6)

After training the ANN, parameter identification consists of solving problem (2), in which the model 
response uk is replaced with an approximated ANN response, i.e. the problem is solved:

  
9 2

1
min .k j kw k

N E d


  
 
  (7)

Another advantage of this approach is the quick identification of parameters, because calling the ANN 
during optimisation is many times faster than calculating the FEM model. Moreover, the determined values 
of the modules certainly meet the optimality criterion defined by (7). Nevertheless, as understood in the original 
formulation (2), the solution’s optimality is still only ‘approximated’. An additional advantage of the approach 
is the ability to easily verify whether the problem (7) has one or more solutions. From this, one can conclude 
the uniqueness (or lack thereof) of the inverse problem.

Learning and identification results
The network training of the 4-10-9 architecture was performed as described above for 95 training samples. 
Figures 14 and 15 show the results of the pattern fits and deflections determined by the trained ANN for all 
100 samples. The training results are very good; significantly better than in the case of the inverse relation 
approximation. A perfect match of the deflection values was achieved even though ANNs with an unfavourable 
architecture were trained (more outputs than inputs). It is worth noting that the quality of the fit of the test 
results does not differ from that of the training data, which indicates that the ANN has been trained correctly.

sample sample 

sample sample 

fig. 14. Direct Nk network learning results for the 1st, 3rd, 5th and 9th reading point of pavement deflection: target – 
reference deflection values, opt – deflection values identified by the trained ANN. The last five points 
of the graphs refer to the testing data

Source: own work.
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fig. 15. Direct response of the network versus the pattern deflection values: u1 (opt_0), u3 (opt_2), u5 (opt_4) 
and u9 (opt_8). The points on the graph also contain test data

Source: own work.

After the ANN has been trained, the module parameters are identified by solving relation (2), in which 
the model response is replaced by the approximated ANN response. Therefore, the optimisation procedure (7) 
was used for the five test sets of deflections to identify the layer modules. This minimisation was done using 
the ‘minimise’ function from the Python language library scipy.optimize. Table 5 presents the numerical 
results of this identification and the averaged values of the modules. The differences in the determined 
and model modules are significant and may exceed even 40% in the case of concrete pavement layers, 
while the differences in the harmonic mean values are not greater than 5% (slightly larger differences are 
observed in the arithmetic means). This indicates the correct identification of the averaged, effective properties 
of the layered substrate, even if the modules of individual layers are determined with very significant errors 
in relation to the expected values.

table 5.  Numerical compilation of the reference (target) and the modules of successive layers of the model determined 
by optimisation defined by Formula (7) (opt) for five test samples

Test 
Young’s 
moduli 
[GPa]

E1 E2 E3 E4
Arithmetic 

mean
Harmonic 

mean

Weighted 
arithmetic 

mean

Weighted 
harmonic 

mean

1
opt 18.58321 18.33018 12.04275 0.06590 12.25551 0.26032 4.64233 0.09076

target 26.37433 13.31490 9.39255 0.06586 12.28691 0.25970 4.72112 0.09069

2
opt 26.84213 21.27434 8.67345 0.04417 14.20852 0.17512 5.49418 0.06085

target 21.91036 12.93881 13.07886 0.04399 11.99300 0.17443 4.49772 0.06061

3
opt 27.80757 21.70412 10.58812 0.06081 15.04016 0.24064 5.78936 0.08376

target 19.01810 15.04311 17.49291 0.06060 12.90368 0.23986 4.76203 0.08348

4
opt 32.68377 23.56009 20.43075 0.07038 19.18625 0.27912 7.20772 0.09697

target 37.61994 22.84971 18.06242 0.07037 19.65061 0.27902 7.45266 0.09696

5
opt 28.07469 21.76108 11.15155 0.04644 15.25844 0.18429 5.85362 0.06399

target 34.45835 12.87345 11.56119 0.04626 14.73481 0.18338 5.63380 0.06373

Source: own work.
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In addition, the identified (opt) modules listed in Table 5 were used to perform calculations using 
the FEM model to verify the fit of the reference (target) and identified pavement deflections. The results 
are shown in Figure 16. The alignment of the deflection lines is ideal for all test samples, despite significant 
discrepancies between the identified (opt) and reference (target) modules. This fact indicates the ambiguity 
of the considered inverse task, i.e. for different sets of modules, indistinguishable lines of pavement deflections 
are obtained from the FEM model.
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fig. 16. Reference (target) and ANN identified (opt) deflections of the pavement for five test specimens

Source: own work.

discussion of results and conclusions

The performed calculations of the identification of the parameters of the numerical model of the multi- 
-layer pavement indicate that artificial neural networks can be successfully used for this purpose. A trained 
inverse network N–1 identifies layer modules directly, generating results with relative error not exceeding 
15% (Method 1). The identification procedure using an artificial neural network N approximating the model, 
on the other hand, generates discrepancies in the identified modules up to 65% (Method 2). The percentages 
quoted only relate to rigid concrete pavement layers. In the case of the last, relatively soft layer of the subsoil, 
the identification results are much better; the discrepancies usually do not exceed 1% for both methods. 
Both methods also generate very good results in identifying the averaged, effective modules for the layers. 
With the mean harmonics, the divergences do not exceed 5% (see Tables 3 and 5).

The large module identification errors generated by Method 2 require a broader comment. As this method 
guarantees a very good adjustment of pavement deflections during the identification process, which is shown 
in Figure 16, obtaining very divergent modules of layers is somewhat surprising. The analysis of the variability 
of the minimised function while solving the problem (7) shows, however, that the solved problem of matching 
pavement deflections does indeed have many solutions, i.e. there are many sets of concrete pavement layer 
modules that generate indistinguishably close deflection lines. It is also an important observation from the point 
of view of Method 1, where significant network learning errors are observed (Figs 11 and 12) along with errors 
in deflection identification (Fig. 13). These errors are precisely the result of the reverse mapping ambiguity.

As a potential source of the ambiguity described above, we can point to the accepted ranges of variability 
of pavement layer modules, whose ranges partially overlap. In this context, it is worth noting the very 
good results of identification for the subsoil layer module, which differs from the pavement layer modules 
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by three orders of magnitude. The reason for the ambiguity of the inverse relation may also be the assumptions 
related to the FEM numerical model used (adopted boundary conditions, plane deformation state) 
and insufficient representation of the model response (vertical deflections on the surface at several points). 
This issue requires further research, especially since the problems related to the unequivocal identification 
of material parameters of layered pavements are also reported by other authors, including in the case 
of identification based on the results of actual dynamic FWD tests. One of the possible approaches for obtaining 
better identification results is using the sophisticated ANN learning algorithms, which can include information 
about the derivatives of the pavement deflection line (Wojciechowski, 2011; Wojciechowski, 2012; Raissi, 
Perdikaris & Karniadakis, 2017). 

An important conclusion resulting from the performed calculations is that a relatively small training dataset 
and small neural networks are sufficient to approximate both direct and inverse relations for the FWD test. 
The results of training and testing of the neural networks indicate that the method of drawing training data 
(LHS method), the applied sizes of the neural networks and the training methods are correct. Nevertheless, 
further testing of the presented methods is necessary, in particular using in situ test data.
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Zastosowanie metody elementów skońcZonych i sZtucZnych sieci 
neuronowych w identyfikacJi parametrów nawierZchni warstwoweJ

stresZcZenie

W artykule przeprowadzono analizę odwrotną parametrów mechanicznych istniejących nawierzchni 
warstwowych. Sztuczna sieć neuronowa (SSN) została wykorzystana do aproksymacji odpowiedzi modelu 
numerycznego nawierzchni na parametry wejściowe. Przedstawiono dwie metody. W pierwszej metodzie 
SSN bezpośrednio odwzorowuje odwrotną zależność między ugięciem nawierzchni a parametrami 
mechanicznymi. W drugiej metodzie aproksymowany model jest wykorzystywany w klasycznych 
obliczeniach wstecznych nawierzchni poprzez procedurę minimalizacji różnic między odpowiedzią modelu 
(obecnie sieci neuronowej) a pomiarami terenowymi uzyskanymi z testu ugięciomierzem dynamicznym 
(FWD). Identyfikowano tylko jeden parametr każdej warstwy nawierzchni – moduł Younga. Stwierdzono, 
że identyfikacja ta nie jest jednoznaczna. Oznacza to, że dane ugięcie można zaobserwować dla różnych 
zestawów modułów sztywności warstw nawierzchni. Średnia sztywność warstw jest jednak zawsze 
identyfikowana z dużą dokładnością.

słowa kluczowe: sztuczna sieć neuronowa, problemy odwrotne, model numeryczny, identyfikacja 
parametrów, ugięciomierz dynamiczny, pomiary terenowe
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