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absTracT

In this work, the problem of heat conduction in a biperiodic composite consisting of two constituent materials 
was analysed. To average the discontinuous coefficients in the heat conduction equation, which arise from 
the heterogeneous structure, the technique of tolerance modelling was applied. The finite difference method 
was then used to solve the resulting system of equations and to determine the distribution of the unknowns. 
The finite difference method algorithm was implemented in Maple 2019 software. The main objective 
of the analysis was to investigate the influence of the composite’s microstructure size on the distribution 
of the unknowns, facilitated by the tolerance model equations derived through the tolerance modelling 
technique. The study demonstrated how the number of composite cells, and consequently the cell size, 
affects temperature values and their fluctuations under selected boundary conditions.
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InTroducTIon

Composites are structures composed of two or more materials. The design of such structures aims to create 
materials that exhibit better properties than homogeneous materials. Composites can feature improved mechanical 
strength, hardness, as well as lower weight or better thermal conductivity than homogeneous structures. Composite 
structures are widely used across various industries due to their enhanced properties compared to traditional 
materials. In the aerospace industry, composites are used to manufacture lightweight yet strong components, such 
as aircraft fuselages, wings and engine parts, which contribute to fuel efficiency. In the automotive sector, they 
are employed in the production of car bodies, chassis and interior components, thereby reducing vehicle weight. 
In the construction industry, composites are utilised for building materials, offering durability and resistance 
to environmental factors. The marine industry benefits from composites in the construction of hulls and other 
structural parts of boats and ships, providing resistance to corrosion and reduced maintenance costs. Composites 
are also used in the sporting goods industry to create high-performance equipment such as tennis rackets, golf 
clubs and bicycles, where strength, stiffness, and lightweight are essential. Additionally, in the energy sector, 
composites are integral to the manufacturing of wind turbine blades and other renewable energy infrastructure, 
where their strength and lightness enhance efficiency and longevity.

Therefore, it is crucial to understand the methods that allow for the examination and analysis of 
heterogeneous structures, among which periodic and biperiodic structures can be distinguished. Among 
such methods, asymptotic homogenisation (Bensoussan, Lions & Papanicolay, 1978), a certain variant of 
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homogenisation that introduces the concept of microlocal parameters (Matysiak & Nagórko, 1989), the finite 
element method (Santos, Mota Soares, Mota Soares & Reddy, 2008), the higher order theory (Aboudi, Pindera 
& Arnold, 1999) and tolerance modelling (Woźniak, Michalak & Jędrysiak, 2008) should be mentioned.

In the case of periodic or biperiodic structures with a repetitive (recurrent) pattern, it is possible to 
mentally isolate repeatable cells that have the same structure. The microstructure parameter is then defined 
as the dimension of such a cell for periodic structures, or as the two dimensions along two perpendicular axes of 
the coordinate system for biperiodic structures. Not all of the mentioned methods take into account the influence 
of the size of the microstructure parameter in the issues considered. Therefore, this work employs tolerance 
modelling, which allows for the consideration of this influence. This technique, by introducing a series of new 
concepts and assumptions, enables the averaging of equations where the coefficients are discontinuous and 
highly oscillating. Tolerance modelling is used in the analysis of heat conduction (Kubacka & Ostrowski, 2021; 
Ostrowski & Jędrysiak, 2021), thermoelasticity (Kubacka & Jędrysiak, 2018; Tomczyk, Gołąbczak & Gołąbczak, 
2024), dynamics (Domagalski, 2018; Tomczyk, Gołąbczak, Litawska & Gołąbczak, 2023) and stability problems 
(Marczak & Jędrysiak, 2021; Tomczyk, Bagdasaryan, Gołąbczak & Litawska, 2021).

The problem analysed in this work is the heat conduction issue in a biperiodic composite, made of two 
different materials. The equations describing it were averaged using tolerance modelling, and their numerical 
solution was then obtained using the finite difference method. The finite difference method algorithm 
was implemented in the Maple 2019 software. This algorithm enabled the calculation and presentation of 
the temperature distribution in the analysed structure under the assumed boundary conditions. Additionally, 
the influence of the volume fractions of the individual materials within the cell on the temperature distribution 
throughout the entire composite was examined. The volume fraction of the individual materials affects not 
only the thermal properties of the structure but also its weight, mechanical strength and production cost.

obJecT under consIderaTIon

Figure 1 shows the analysed composite, consisting of two different constituent components. The dimensions 
of the composite are denoted by Lx along the x-axis and Ly along the y-axis. The microstructure parameter 
(mentally isolated cell dimension) along the x-axis is denoted by lx and along the y-axis is denoted by ly and it 
is dependent on the number of cells (N) in the entire structure. 

fig. 1. Composite with biperiodic structure 

Source: own work. 
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The volume fraction of the first and second material within the cell is constant. In the conducted analysis, 
the number of cells (N) is variable and, consequently, the dimension of the microstructure parameters are 
also variable. 

In relation to the considered structure, the heat conduction problem was analysed and described by 
following Fourier equation:

( ) 0,i ij j cθ ρθ∂ ∂ − =K  (1)

where:
Kij – tensor of conductivity,
θ – total temperature field,
c – specific heat,
ρ – mass density,
i, j – indices equal to 1, 2, 3.

The material coefficients in Eq. 1  are discontinuous due to the heterogeneous structure of the composite.

Tolerance modellInG

Tolerance modelling is a technique initiated by Professor Czesław Woźniak and later continued and developed 
in many research institutes (Tomczyk, Gołąbczak, Kubacka, Bagdasaryan, 2024). In addition to allowing for 
the consideration of the influence of microstructure size in the analysed problems, this technique does not require 
solving the problem at the cell level to determine appropriate shape functions – unlike asymptotic homogenisation. 

This technique introduces a series of new concepts, the most significant of which, in the context of the conducted 
research, are the tolerance-periodic function, the slowly varying function and the highly oscillating function.

A function f can be described as tolerance-periodic (with respect to the primary cell Δ and the tolerance 
parameter δ) if it satisfies the following conditions:

( )( ) ( )Ωx 0
( ) 0 ( )

( )
( , ) ( )  ( ) ( , ) ,i i i

H x
x f x H f f x

Ω
Ω Δ δ∀ ∈ ∃ ⋅ ∈ ∂ ⋅ − ⋅ ≤   (2)

( ) 0

Δ( )

( , ) z ( ),if z d C Ω
⋅

⋅ ∈   (3)

where: 
∂if – gradient of order i function f,
f(x,·) with ~ – periodic approximation of the gradient ∂if,
Ω – region bounded in R2,
Ωx – cluster of adjacent cells,
Δ – primary cell,
H0(Δ) – area of Δ-periodic square-integrable functions defined in R2,
H0(Ωx) – area of Δ-periodic square-integrable functions defined in Ωx,
δ – tolerance parameter.

On the other hand, function u can be described as slowly varying (with respect to the primary cell Δ and 
the tolerance parameter δ) when it is a tolerance-periodic and it satisfies the following condition:
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( ) ( )( )Δ( )
( ) , ( ), 0,1 ,x
i ix u x u x iΩ∀ ∈ ⋅ = ∂ =  (4)

where: 
Δ(x) – cell centred at the point x.

The function h can be described as highly oscillating (with respect to the primary cell Δ and the tolerance 
parameter δ) when it is a tolerance-periodic and it satisfies the following condition:

( ) ( )( )Δ( )
( ) , ( ), 0,1 .x
i ix h x h x iΩ∀ ∈ ⋅ = ∂ =   (5)

The main assumption of tolerance modelling is the assumption of so-called micro-macro decomposition 
of the temperature field (in the carried-out analysis). This assumption is described by the following equation:

( ) ( ) ( ) ( ), , , , ,a ax y x y g x y x yθ ϑ ψ= + ⋅  (6)

where:
θ – total temperature field,

( ) ( ) ( ) ( ), , , , ,a ax y x y g x y x yθ ϑ ψ= + ⋅ – average temperature,
ga – fluctuation shape functions,
ψa – fluctuation amplitudes,
a – index runs over 1 and 2.

The average temperature ( ) ( ) ( ) ( ), , , , ,a ax y x y g x y x yθ ϑ ψ= + ⋅ and fluctuation amplitudes ψa are new fundamental unknowns, while the fluctuation 
shape functions are taken based on literature and experience. The fluctuation shape functions g1 and g2 adopted in 
this problem are a combination of saw-type function and piecewise parabolic function (Fig. 2).

Symbols vx and vy represent the volume fraction of the first material in the cell along the x-axis and 
y-axis, respectively.

fig. 2. Fluctuation shape functions 

Source: own work. 
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The mentioned shape functions are expressed by the following equations:

( ) ( ) ( )' "
1 , ,g x y f x f y= ⋅  (7)

( ) ( ) ( )' "
2 , .g x y h x h y= ⋅  (8)

Using the above concepts and assumptions, the equations of the tolerance model were derived, in which 
the coefficients are average and slowly varying. These equations include terms that directly depend on 
the dimension of the microstructure, as shown:

1 1 1 1
1 1 2 2

2 2 2 2
0,
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 (11)

where: 
∇ – gradient in x-, y- and z-directions,
overlined ∇ – gradient in z-direction,
∂ – gradient in x- and y-directions.

fInITe dIfference meThod alGorIThm

To find the numerical solution of the tolerance model equations (Eqs 9–11), the finite difference method was 
chosen. The idea of this method is to replace the set of admissible solutions with a set of function values 
at points within the region, subject to appropriate discretisation and to replace the function derivatives at 
those points with the corresponding finite difference quotients defined at those points. For this purpose, 
the composite area was discretised in both directions (Fig. 3). Along the x-axis, it was divided into segments 
Δx of equal length, introducing m + 1 nodes, with Δx equal to Lx · m–1. Along the y-axis, it was divided into 
segments Δy of equal length, introducing n + 1 nodes, with Δy equal to Ly · n–1. 

The concept of the finite difference method allows for the replacement of a system of differential equations with 
a system of linear algebraic equations, written at each node of the discretised region, where the unknown values of 
the average temperature and fluctuation amplitudes – those not specified by boundary conditions – are sought.

As mentioned, the equations are written only at the nodes where the unknowns are not defined. Unfortunately, in 
the analysed problem, there are three unknowns for which different boundary conditions are specified (at different 
nodes). Additionally, the equations written at the boundary and near-boundary nodes lead to the emergence of 
unknowns defined at nodes outside the composite region – so-called virtual nodes. Subsequently, the unknowns 
at the virtual nodes are eliminated from the equations using the boundary conditions. 
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fig. 3. Discretised area 

Source: own work.

To create an algorithm in Maple 2019 software, the coefficients associated with the unknowns in all 
equations were grouped and ordered, forming a global coefficient matrix. Similarly, the components of 
the free term vector, resulting from the boundary conditions and known values of the unknowns at selected 
nodes, were grouped. The system of algebraic equations was then solved, yielding the numerical solution and 
the distribution of the sought unknowns.

eXample of applIcaTIon

The finite difference method algorithm was used to investigate the influence of microstructure size on 
the heat conduction analysis in a biperiodic composite with dimensions Lx = Ly = 1 m. It was assumed that 
the composite consists of two components, for which material properties such as specific heat, mass density 
and thermal conductivity coefficients were defined, similar to those of steel and aluminium (Fig. 4).

fig. 4. Considered biperiodic composite

Source: own work.
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The volume fraction of the first material in the cell was set to 0.5 along the x-axis and 0.25 along the y-axis. 
In the initial analysis, it was assumed that the composite consisted of N = 10 repeating cells along both axes of 
the coordinate system. Subsequently, the necessary initial boundary conditions were applied. 

For the problem under consideration, the following boundary conditions were assumed: with respect to 
the average temperature ( ) ( ) ( ) ( ), , , , ,a ax y x y g x y x yθ ϑ ψ= + ⋅ (Fig. 5a), it was assumed that its values were known on the left and top edges of 
the composite (Area 1), while the right and bottom edges were thermally insulated (Area 2). With respect 
to the fluctuation amplitudes of the temperatures ψ1 and ψ2 (Fig. 5b), it was assumed that its values were known 
on all edges (Area 1). An initial condition was also specified in the form of known averaged temperature and 
fluctuation amplitudes of the temperatures during the first-time step.

fig. 5. Areas of defined boundary conditions

Source: own work.

The results of the initial analysis, in the form of 3D maps of the sought dimensionless unknowns 
(approximated) in the final time step, are shown in Figures 6–8.

ϑ(x, y)

fig. 6. Average temperature ( ) ( ) ( ) ( ), , , , ,a ax y x y g x y x yθ ϑ ψ= + ⋅ – initial analysis

Source: own work.
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ψ1(x,y)

fig. 7. Fluctuation amplitudes of the temperature ψ1 – initial analysis

Source: own work.

ψ2(x, y)

fig. 8. Fluctuation amplitudes of the temperature ψ2 – initial analysis

Source: own work. 

The calculations were then repeated, increasing the number of cells to N = 20 and N = 30, thereby changing 
the dimension of the microstructure parameter.

The comparison of the average temperature distribution and the temperature fluctuation amplitudes 
in a selected cross-section (x = 0.5Lx) for different numbers of cells is presented in Figures 9–11.



Kubacka, E., Ostrowski, P. (2024). The influence of microstructure size on temperature distribution in biperiodic composite. 
Acta Sci. Pol. Architectura, 23, 340–350, DOI: 10.22630/ASPA.2024.23.26

348 aspa.sggw.edu.pl

fig. 9. Comparison of macrotemperature ( ) ( ) ( ) ( ), , , , ,a ax y x y g x y x yθ ϑ ψ= + ⋅ distribution for different numbers of cells

Source: own work. 

Increasing the number of cells, and consequently reducing the microstructure size, led to an increase in 
the average temperature values, with relative differences (compared to the higher value) reaching up to 70.6%.

fig. 10. Comparison of fluctuation amplitudes ψ1 distribution for different numbers of cells

Source: own work. 

A similar relation was observed in the case of fluctuation amplitudes of the temperature ψ1, with relative 
differences (compared to the higher value) ranging from 49.2% to 61.1%.

fig. 11. Comparison of fluctuation amplitudes ψ2 distribution for different numbers of cells

Source: own work. 
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An opposite relation was observed in the case of fluctuation amplitudes of the temperature ψ2 – as 
the number of cells increased, meaning the microstructure parameter size reduced, the amplitude values 
decreased with relative differences (compared to the higher value) ranging from 40.1% to 139.5%. 

summarY and conclusIons

Based on the conducted analysis, the following general and specific conclusions were formulated:
1. Tolerance modelling enables the replacement of differential equations with tolerance-periodic, 

discontinuous and highly oscillating coefficients, with a system of equations that have slowly 
varying coefficients.

2. The obtained tolerance model equations allow for the consideration of the influence of microstructure size 
in the analysed problems.

3. The tolerance modelling technique does not require solving the problem at the cell level to find 
the fluctuation shape functions.

4. The created finite difference method algorithm allows for obtaining the temperature distribution in 
the analysed structure, which enables a better understanding of the behaviour of composites under 
thermal load.

5. The analysis shows the significant impact of the number of composite cells on the average temperature 
and fluctuation amplitudes distribution, as it directly affects the cell dimension, which corresponds to 
the microstructure size.
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WpłYW WYmIaru mIKrosTruKTurY na rozKład TemperaTurY 
W bIperIodYcznYm KompozYcIe

sTreszczenIe

W niniejszej pracy przeanalizowano zagadnienie przewodzenia ciepła w biperiodycznym kompozycie 
składającym się z dwóch materiałów składowych. W celu uśrednienia nieciągłych współczynników 
w równaniu przewodzenia ciepła, wynikających z niejednorodnej budowy struktury, zastosowano technikę 
tolerancyjnego modelowania. Następnie wykorzystano metodę różnic skończonych do rozwiązania 
otrzymanego układu równań i znalezienia rozkładu poszukiwanych niewiadomych. Algorytm metody różnic 
skończonych zaimplementowano w programie Maple 2019. Głównym celem przeprowadzonej analizy 
było zbadanie wpływu wymiaru mikrostruktury kompozytu na rozkład poszukiwanych niewiadomych, 
co umożliwiły równania modelu tolerancyjnego otrzymane dzięki wykorzystaniu techniki tolerancyjnego 
modelowania. W pracy pokazano, w jaki sposób liczba komórek kompozytu (a co za tym idzie wymiar 
komórki) wpływa na wartości temperatury i jej fluktuacji w wybranych warunkach brzegowych.

słowa kluczowe: przewodzenie ciepła, kompozyty, biperiodyka, tolerancyjne modelowanie
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