Joint application of the finite element method and artificial neural network in the identification of parameters of layered pavement

Main Article Content

Artur Sławomir Góral
Marek Wojciechowski


Keywords : Artificial neural network, Inverse problems, Numerical model, Parameter identification, Falling Weight Deflectometer, Field measurement
Abstract

In this paper, an inverse analysis of the mechanical parameters of existing layered pavements was performed. An artificial neural network (ANN) was used to approximate the response of the numerical pavement model to the input parameters. Two methods were presented. In the first method, the ANN directly maps the inverse relationship between the pavement surface deflection and mechanical parameters. In the second method, the approximated model was used in the classical back-calculation of pavements by a procedure of minimising the differences between the model response (now a neural network) and field measurements obtained from the falling weight deflectometer (FWD) test. Only one parameter of each pavement layer, the Young’s modulus, was identified. It was found that the identification is not unambiguous. This means a given pavement deflection can be observed with different sets of layer stiffness moduli. However, the average stiffness of the layers is always identified with high accuracy.

Article Details

How to Cite
Góral, A. S., & Wojciechowski, M. (2025). Joint application of the finite element method and artificial neural network in the identification of parameters of layered pavement. Acta Scientiarum Polonorum. Architectura, 24(1), 123–141. https://doi.org/10.22630/ASPA.2025.24.10
References

Alwattar, T. A. & Mian, A. (2019). Development of an Elastic Material Model for BCC Lattice Cell Structures Using Finite Element Analysis and Neural Networks Approaches. Journal of Composites Science, 3 (2), 33. https://doi.org/10.3390/jcs3020033 (Crossref)

Aubdulnibe, F. F. & Jassim, k. A. (2019). An Application of Artificial Neural Networks (ANNs) to the Backcalculation of Flexible Pavement Moduli. Journal of Physics: Conference Series, 1362 (1), 012146. https://doi.org/10.1088/1742-6596/1362/1/012146 (Crossref)

Boso, D. P. & Lefik, M. (2012). Inverse problem – Soft solution. In Bytes and Science. Barcelona: CIMNE.

Boso, D. P., Lefik, M. & Schrefler, B. (2012). Multiscale numerical modeling of composite material: A combined FE-ANN approach. ECCOMAS 2012 – European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers, 8912–8926.

Boussinesq, J. (1885). Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: Principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: Mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse. Paris: Gauthier-Villars.

Bredenhann, S. & Ven, M. (2004, 12 September). Application of artificial neural networks in the back-calculation of flexible pavement layer moduli from deflection measurements. Presented at the 8th Conference on Asphalt Pavements for Southern Africa.

Burczyński, T., Beluch, W., Długosz, A., Orantek, P. & Nowakowski, M. (2000). Evolutionary methods in inverse problems of engineering mechanics. In Inverse Problems in Engineering Mechanics II International Symposium on Inverse Problems in Engineering Mechanics 2000 (ISIP 2000) Nagano, Japan (553–562). https://doi.org/10.1016/B978-008043693-7/50131-8 (Crossref)

Burczyński, T., Beluch, W., Długosz, A., Orantek, P. & Skrobol, A. (2006). Intelligent computing in inverse problem. Computer Assisted Mechanics and Engineering Sciences, 13 (1), 161–206.

Burmister, D. M. (1945). The General Theory of Stresses and Displacements in Layered Soil Systems. III. Journal of Applied Physics, 16 (5), 296–302. https://doi.org/10.1063/1.1707590 (Crossref)

Elbagalati, O., Elseifi, M., Gaspard, K. & Zhang, Z. (2017). Development of an artificial neural network model to predict subgrade resilient modulus from continuous deflection measurements. Canadian Journal of Civil Engineering, 44 (9), 700–706. https://doi.org/10.1139/cjce-2017-0132 (Crossref)

Galbusera, F., Casaroli, G. & Bassani, T. (2019). Artificial intelligence and machine learning in spine research. JOR SPINE, 2 (1), e1044. https://doi.org/10.1002/jsp2.1044 (Crossref)

Gawin, D., Lefik, M. & Schrefler, B. A. (2001). ANN approach to sorption hysteresis within a coupled hygro-thermo-mechanical FE analysis. International Journal for Numerical Methods in Engineering, 50 (2), 299–323. https://doi.org/10.1002/1097-0207(20010120)50:2<299::AID-NME20>3.0.CO;2-Y (Crossref)

Lamb, H. (1997). I. On the propagation of tremors over the surface of an elastic solid. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 203 (359–371), 1–42. https://doi.org/10.1098/rsta.1904.0013 (Crossref)

Lefik, M. & Boso, D. P. (2016). Identification of parameters of adsorption by ap-proximation of inverse relation and using artificial neural networks. Presented at the Proceedings Solmech2016 Conference. Retrieved from: http://www.solmech2016.ippt.pan.pl/Abstracts/0177.pdf [accessed: 14.06.2023].

Lefik, M. (2004). Hybrid, finite element-artificial neural network model for composite materials. Journal of Theoretical and Applied Mechanics, 42 (3), 539–563.

Li, M. & Wang, H. (2017). Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters. International Journal of Pavement Engineering, 20, 490–498. https://doi.org/10.1080/10298436.2017.1309197 (Crossref)

Li, M. & Wang, H. (2018). Prediction of Asphalt Pavement Responses from FWD Surface Deflections Using Soft Computing Methods. Journal of Transportation Engineering, 144. https://doi.org/10.1061/JPEODX.0000044 (Crossref)

Lin, G., Zhang, P., Liu, J. & Wang, W. (2016). Elastic solutions due to a time-harmonic point load in isotropic multi-layered media. Structural Engineering and Mechanics, 57, 327–355. https://doi.org/10.12989/sem.2016.57.2.327 (Crossref)

Mckay, M. D., Beckman, R. J. & Conover, W. J. (2000). A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 42 (1), 55–61. https://doi.org/10.1080/00401706.2000.10485979 (Crossref)

Meier, R. W. (1995). Backcalculation of flexible pavement moduli from falling weight deflectometer data using artificial neural networks. Atlanta: Georgia Institute of Technology.

Minsky, M. & Papert, S. (1969). Perceptrons; an Introduction to Computational Geometry. Cambridge, MA: MIT Press.

Momeni, E., Nazir, R., Jahed Armaghani, D. & Maizir, H. (2015). Application of Artificial Neural Network for Predicting Shaft and Tip Resistances of Concrete Piles. Earth Sciences Research Journal, 19 (1), 85–93. https://doi.org/10.15446/esrj.v19n1.38712 (Crossref)

Nita, P. (2008). Budowa i utrzymanie nawierzchni lotniskowych. Sulejówek: Wydawnictwa Komunikacji i Łączności.

Raissi, M., Perdikaris, P. & Karniadakis, G. E. (2017, 28 November). Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. arXiv, 1711.10561. https://doi.org/10.48550/arXiv.1711.10561

Ruta, P., Krawczyk, B. & Szydło, A. (2015). Identification of pavement elastic moduli by means of impact test. Engineering Structures, 100, 201–211. https://doi.org/10.1016/j.engstruct.2015.05.038 (Crossref)

Saltan, M. & Terzi, S. (2005). Comparative analysis of using artificial neural networks (ANN) and gene expression programming (GEP) in backcalculation of pavement layer thickness. Indian Journal of Engineering and Materials Sciences, 12 (1).

Shahin, M., Jaksa, M. & Maier, H. (2001). Artificial Neural Network Applications in Geotechnical Engineering. Australian Geomechanics, 36, 49–62.

Shahnazari, H., Tutunchian, M., Mashayekhi, M. & Amini, A. (2012). Application of Soft Computing for Prediction of Pavement Condition Index. Journal of Transportation Engineering, 138 (12), 1495–1506. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000454 (Crossref)

Tadeusiewicz, R. (1993). Sieci neuronowe. Warszawa: Akademicka Oficyna Wydawnicza RM.

Vahab, M., Shahbodagh, B., Haghighat, E. & Khalili, N. (2023). Application of Physics-Informed Neural Networks for forward and inverse analysis of pile–soil interaction. International Journal of Solids and Structures, 277–278, 112319. https://doi.org/10.1016/j.ijsolstr.2023.112319 (Crossref)

Wesołowski, M. & Blacha, K. (2014). Assessment of Load Capacity of the Airport Pavement Structure with the Use of the ACN-PCN Method. Research Works of Air Force Institute of Technology, 35 (1). https://doi.org/10.1515/afit-2015-0002 (Crossref)

Wikipedia (2023, 12 March). Boeing 747. Wikipedia. Retrieved from: https://pl.wikipedia.org/w/index.php?title=Boeing_747&oldid=69845987 [accessed: 14.06.2023].

Wojciechowski, M. (2011). Application of artificial neural network in soil parameter identification for deep excavation numerical model. Computer Assisted Mechanics and Engineering Sciences, 18.

Wojciechowski, M. (2012). Solving Differential Equations by Means of Feed-Forward Artificial Neural Networks. In L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh & J. M. Zurada (Eds), Artificial Intelligence and Soft Computing (pp. 187–195). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-642-29347-4_22 (Crossref)

Wojciechowski, M. (2016). ffnet: Feed-forward neural network for Python [Python]. Retrieved from: https://github.com/mrkwjc/ffnet [accessed 15.06.2023].

Wojciechowski, M. (2018). Fempy – Finite element method in Python [Python]. Retrieved from: https://fempy.org/ [accessed: 15.03.2021].

Yoder, E. J. & Witczak, M. W. (1975). Principles of Pavement Design. Hoboken, NJ, USA: John Wiley & Sons. https://doi.org/10.1002/9780470172919 (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles