Local scouring processes at a pier on the White Nile Bridge

Main Article Content

Mohammed Ahmed Abdelbaset Elamin
Marta Kiraga


Keywords : hydraulic structure, bridge, sediment transport, erosion, hydraulic modelling
Abstract

This study evaluates global scour prediction models (HEC-18, Froehlich’s) for a pier on the White Nile Bridge in Sudan, hypothesising they underestimate scour in tropical rivers with cohesive sediments and dynamic monsoonal flows. Hydrological analysis, HEC-RAS modelling, and sensitivity testing revealed significant discrepancies: the HEC-18 model predicted scour depths of 0.83–1.52 m, while Froehlich’s model yielded 1.35–3.18 m. Both were substantially exceeded by a region-specific nonlinear regression model for the Nile (3.24–10.67 m), confirming the hypothesis. The results demonstrate that temperate-derived models fail to capture the White Nile’s cohesive clay-silt dynamics and flood-driven sediment transport. This can lead to underestimation, potentially resulting in bridge failure or collapse. The conclusion is that locally calibrated equations and adaptive mitigation strategies are essential for accurate scour risk assessment in tropical rivers.

Article Details

How to Cite
Ahmed Abdelbaset Elamin, M. ., & Kiraga, M. (2025). Local scouring processes at a pier on the White Nile Bridge. Acta Scientiarum Polonorum. Architectura, 24(1), 289–301. https://doi.org/10.22630/ASPA.2025.24.20
References

Boivin, P., Garnier, P. & Tessier, D. (2004). Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Science Society of America Journal, 68 (4), 1145‒1153. (Crossref)

Ejigu, M. T. (2021). Overview of water quality modeling. Cogent Engineering, 8 (1), 1891711. (Crossref)

Elsaeed, G., Elsersawy, H. & Ibrahim, M. (2015). Scour Evaluation at the Nile River Bends on Rosetta Branch. LAP Lambert Academic Publishing. (Crossref)

Froehlich, D. C. (1988). Analysis of onsite measurements of scour at piers. In Hydraulic engineering: proceedings of the 1988 national conference on hydraulic engineering (pp. 534‒539). New York: ASCE.

Gebremicael, T. G., Deitch, M. J., Gancel, H. N., Croteau, A. C., Haile G. G., Beyene, A. N. & Kumar, L. (2022). Satellite-based rainfall estimates evaluation using a parsimonious hydrological model in the complex climate and topography of the Nile River Catchments. Atmospheric Research, 266, 105939. https://doi.org/10.1016/j.atmosres.2021.105939 (Crossref)

Helal, E., El Sersawy, H. & Abdelbaky, M. (2022). Evaluation of the predictive performance of general scour equations along the Nile River. ISH Journal of Hydraulic Engineering, 28 (S1), 366–379. https://doi.org/10.1080/09715010.2019.1668307 (Crossref)

Japan International Cooperation Agency. (1990). The feasibility study on the construction of the New White Nile Bridge in the Republic of the Sudan: Main report (Report 52). Tokyo: Japan International Cooperation Agency.

Johnson, P. A. & Torrico, E. F. (1994). Scour around wide piers in shallow water. Transportation Research Record, 1471, 66‒70.

Junk, W. J., Piedade, M. T. F., Lourival, R., Wittmann, F., Kandus, P., Lacerda, L. D., Bozelli, R. L., Esteves, F. A., Nunes da Cunha, C., Maltchik, L., Schöngart, J., Schaeffer-Novelli, Y. & Agostinho, A. A. (2014). Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Ecosystems, 24 (1), 5‒22. https://doi.org/10.1002/aqc.2386 (Crossref)

Khalafalla, E. E. & Ali, A. H. M. (2020). Inspection and rehabilitation of old White Nile steel bridge substructure. FES Journal of Engineering Sciences, 9 (1), 57–64. https://doi.org/10.52981/FJES.V9I1.659 (Crossref)

Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., d’Horta, F. M., Wight, C., Wittmann, F., Zuanon, J., Baker, P. A., Ribas, C. C., Norgaard, R. B., Filizola, N., Ansar, A., Flyvbjerg, B. & Stevaux, J. C. (2017). Damming the rivers of the Amazon basin. Nature, 546 (7658), 363‒369. https://doi.org/10.1038/nature22333 (Crossref)

Lauchlan, C. S., Melville, B. W. (2001). Riprap protection at bridge piers. Journal of Hydraulic Engineering, 127 (5), 412–418. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(412) (Crossref)

Maimun, R. (2024). Experimental study on Local Scour around Bridge Pier Models generated by Flash Floods carrying Debris. IOP Conference Series: Earth and Environmental Science, 1343 (1), 012028. https://doi.org/10.1088/1755-1315/1343/1/012028 (Crossref)

McKeogh, E., Bekic, D. (2010a). Malahide Viaduct Reinstatement. Technical Paper 1. Collapse Mechanism and Initial Emergency Works. Cork: Flood Study Group University College Cork.

McKeogh, E., Bekic, D. (2010b). Malahide Viaduct Reinstatement. Technical Paper 2. Physical Models. Cork: Flood Study Group University College Cork.

McKeogh, E., Bekic, D. (2010c). Malahide Viaduct Reinstatement. Technical Paper 3. Computer Models and Hybrid Modelling. Cork: Flood Study Group University College Cork.

Melville, B. W. & Coleman, S. E. (2000). Bridge scour. Colorado: Water Resources Publication.

Omer, A. Y. A., Ali, Y. S. A., Roelvink, J. A., Dastgheib, A., Paron, P. & Crosato, A. (2015). Modelling of sedimentation processes inside Roseires Reservoir (Sudan). Earth Surface Dynamics, 3 (2), 223‒238. https://doi.org/10.5194/esurf-3-223-2015 (Crossref)

Perlman, H. (2016). The water cycle. USGS Water Science School. Retrieved from https://water.usgs.gov/edu/watercycle.html [accessed: 18.05.2017].

Richardson, E. V. & Davis, S. R. (2001). Evaluating scour at bridges (FHWA-NHI-01-001). (4 ed.). Federal Highway Administration.

Sumer, B. M. & Fredsøe, J. (2002). The mechanics of scour in the marine environment. World Scientific Publishing Company. https://doi.org/10.1142/4942 (Crossref)

Talbot, M. R. & Williams, M. A. (2009). Cenozoic evolution of the Nile Basin. In H. Dumont (Ed.), The Nile: Origin, environments, limnology and human use (pp. 37‒60). Springer Science + Business Media. Springer Science + Business Media. https://doi.org/10.1007/978-1-4020-9726-3_3 (Crossref)

Van Rijn, L. C., Nieuwjaar, M. W., Kaay, T. van der, Nap, E. & Kampen, A. van (1993). Transport of fine sands by currents and waves. Journal of Waterway, Port, Coastal, And Ocean Engineering, 119 (2), 123‒143. (Crossref)

Wang, Q. & Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218, 358‒365. https://doi.org/10.1016/j.envpol.2016.07.011 (Crossref)

Wrzesiński, D. & Graf, R. (2022). Temporal and spatial patterns of the river flow and water temperature relations in Poland. Journal of Hydrology and Hydromechanics, 70 (1), 12‒29. https://doi.org/10.2478/johh-2021-0033 (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles
Most read articles by the same author(s)