Main Article Content
The increasing demands placed on geotechnics require the development of interpretation methods to obtain as many geotechnical parameters as possible from a single test profile. Extensive databases of documented test points were used to construct and develop a direct correlation between the measured pressures p0 and p1 from the dilatometer tests (DMT) and the laboratory results of grain size distribution tests of cohesionless soils from the analysed boreholes, as well as the pore water pressure (u0). Furthermore, the analysis considered pore water pressure (u0). The primary achievement of this paper is the development of an original correlation that enables the direct estimation of the equivalent diameter (D50) of cohesionless soils based on DMT results. Furthermore, the D50 values calculated from the proposed relationship were validated using laboratory test results from soils from other sites not included in the analysis during the development of the proposed empirical relationship.
Article Details
Bajda, M., Skutnik, Z., Lech, M. & Rabarijoely, S. (2018). Ocena parametrów gruntów organicznych do projektowania wzmocnienia podłoża drogi ekspresowej na podstawie badań in situ. Acta Scientiarum Polonorum. Architectura, 17 (2), 107–114. https://doi.org/10.22630/ASPA.2018.17.2.19 (Crossref)
Bałachowski, L. & Kurek, N. (2008). Influence of boundary conditions in calibration chamber. Archives of Civil Engineering, 54 (4), 653–668.
Banach, S. (1950). Mechanika (Vols 1, 2). Warszawa: Czytelnik.
Barański, M., Kaczyński, R., Borowczyk, M., Kraużlis, K., Trzciński, J., Wójcik, E., Granacki, T., Szczepański & Zawrzykraj, P. (2004). Ocena zachowania się iłów plioceńskich ze Stegien w warunkach naprężeń efektywnych (projekt badawczy KBN, 5, T12B) [unpublished].
Bleistein, N. & Handelsman, R. A. (1975). Asymptotic expansions of integrals. New York: Dover Publications.
Bond, A. & Harris, A. (2008). Decoding Eurocode 7. London: CRC Press.
Cichy, W., Lechowicz, Z. & Garbulewski, K. (2017). Naprawy i wzmocnienia konstrukcji budowlanych. In Geotechnika: XXII Ogólnopolskie Warsztaty Pracy Projektanta Konstrukcji, Wisła, 7–10 marca 2017 r. Wykłady (Vol. 1, pp. 21–32). Kraków: Polski Związek Inżynierów i Techników Budownictwa. Oddział Małopolski.
Cruze, I. R. (2009). An evaluation of seismic flat dilatometer and lateral stress seismic piezocone. Vancouver: The University of British Columbia.
Fellenius, B. H. & Eslami, A. (2000). Soil profile interpreted from CPTu data. In Proceedings of GEOTECH –Year 2000. Developments in Geotechnical Engineering (Vol. 1, pp. 163–171). Bangkok: Asian Institute of Technology.
Fragaszy, R. J., Su, W. & Siddiqi, F. H. (1990). Effects of oversize particles on the density of clean granular soils. Geotechnical Testing Journal, 13 (2), 106–114. https://doi.org/10.1520/GTJ10701J (Crossref)
Godlewski, T. & Wszędyrówny-Nast, M. (2016). Correlations of regional geotechnical parameters on the basis of CPTU and DMT tests. In Proceedings of 13th Baltic Sea Geotechnical Conference (pp. 22–27). Vilnius: Vilnius Gediminas Technical University Press. (Crossref)
Gryczmański, M. (1995). Wprowadzenie do opisu sprężysto-plastycznych modeli gruntu. Warszawa: Komitet Inżynierii Lądowej i Wodnej PAN.
Hakam, A., Febriansyah, D. & Adji, B. M. (2020). Liquefaction Mapping Procedure Development: Density and Mean Grain Size Formulations. Geomate Journal, 18 (70), 155–161. (Crossref)
Kaczyński, R. R. (2017). Warunki geologiczno-inżynierskie na obszarze Polski. Warszawa: Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy.
Lechowicz, Z., Fukue, M., Rabarijoely, S. & Sulewska, M. J. (2018). Evaluation of the Undrained Shear Strength of Organic Soils from a Dilatometer Test Using Artificial Neural Networks. Applied Sciences, 8 (8), 1395. https://doi.org/10.3390/app8081395 (Crossref)
Lechowicz, Z. & Rabarijoely, S. (1996). Wykorzystanie badań in situ w ocenie wzmocnienia słabonośnego podłoża zapory budowanej etapowo. In Materiały VII Konferencji Technicznej Kontroli Zapór, Rytro (pp. 231–240). Warszawa: Instytut Meteorologii i Gospodarki Wodnej.
Lechowicz, Z. & Rabarijoely, S. (2005). Evaluation of organic subsoil conditions after large deformations. In Proceedings of the 2nd International Conference on Problematic Soils, Petaling Jaya, Malaysia (Vol. 3, pp. 1075–1082). Singapore: CI-Premier.
Lechowicz, Z., Rabarijoely, S. & Szczypiński, P. (2004). Wykorzystanie badań dylatometrycznych do określenia rodzaju i stanu gruntów organicznych [The use of dilatometer test to determine the type and state of organic soils]. Przegląd Naukowy. Inżynieria i Kształtowanie Środowiska, 2 (29), 191–201.
Lunne, T., Robertson, P. K. & Powell, J. J. M. (1997). Cone Penetration Testing in Geotechnical Practice. London: Blackie Academic/Chapman-Hall Publishers.
Marchetti, S. (1980). In Situ Tests by Flat Dilatometer. Journal of the Geotechnical Engineering Division, 106 (GT3), 299–321. (Crossref)
Marchetti, S. & Crapps, D. K. (1981). Flat dilatometer manual (internal report). Gainesville, FL: GPE.
Mayne, P. W. (2006). Interrelationships of DMT and CPT readings in soft clays. In Proceedings of the 2nd International Conference on Flat Dilatometer Testing, Washington, D.C. (pp. 231–236). Lancaster: In-Situ Soil Testing.
Mayne, P. W., Cargill, E. & Greig, J. (2025). Piezocone Screening Approach for Regular, Organic, and Sensitive Soft Clays. In Geotechnical Frontiers 2025 (pp. 22–37). Reston, VA: American Society of Civil Engineers. (Crossref)
Mayne, P. W., Greig, J. & Cargill, E. (2024). Application of two analytical CPTU solutions to sensitive clay in Québec. In Proceedings of the 7th International Conference on Geotechnical and Geophysical Site Characterization, Barcelona, 18–21 June 2024 (pp. 226–233). Barcelona: Scipedia. (Crossref)
Mayne, P. W. & Liao, T. (2004). CPT-DMT interrelationships in Piedmont residuum. In Geotechnical and Geophysical Site Characterization (Vol. 2, pp. 345–350). Rotterdam: Millpress.
Mayne, P. W., Martin, G. K. & Schneider, J. A. (1999). Flat dilatometer modulus applied to drilled shaft foundations in Piedmont residuum. In Proceedings of the ASCE Annual Convention, Charlotte (GSP 92): Behavioral Characteristics of Residual Soils (pp. 101–112). Reston, VA: American Society of Civil Engineers.
Młynarek, Z. (2007). Site investigation and mapping in urban areas. In Proceedings of 14th European Conference on Soil Mechanics and Geotechnical Engineering, Madrid (Vol. 1, pp. 175–202). Rotterdam: Millpress.
Młynarek, Z., Gogolik, S. & Marchetti, D. (2006). Suitability of the SDMT method to assess geotechnical parameters of post-flotation sediments. In Proceedings of the 2nd International Conference on Flat Dilatometer Testing (pp. 148–153). Lancaster: In-Situ Soil Testing.
Młynarek, Z. & Sanglerat, G. (1983). Relationships between shear parameters and cone resistance for some cohesive soils. In Proceedings of International Symposium In-Situ Testing, Paris (Vol. 2, pp. 437–452). Paris: AIGI/IAEG.
Młynarek, Z., Stefaniak, G. & Wierzbicki, J. (2012). Geotechnical parameters of alluvial soils from in-situ tests. Archives of Hydro-Engineering and Environmental Mechanics, 59 (1–2), 63–81. (Crossref)
Młynarek, Z., Wierzbicki, J. & Long, M. (2008). Factors affecting CPTU and DMT characteristics in organic soils. In Proceedings of 11th Baltic Sea Geotechnical Conference (Vol. 1, pp. 407–417). Gdańsk: Gdansk University of Technology.
Morawski, W. (1984). Osady wodno-morenowe. Warszawa: Wydawnictwa Geologiczne.
Nepelski, K. A. (2020). Numeryczne modelowanie pracy konstrukcji posadowionej na lessowym podłożu gruntowym. Lublin: Wydawnictwo Politechniki Lubelskiej.
Orr, T. L. L. (2000). Selection of characteristic values and partial factors in geotechnical designs to Eurocode 7. Computers and Geotechnics, 26, 263–279. (Crossref)
Pisarczyk, S. (2014). Geoinżynieria. Metody modyfikacji podłoża gruntowego (2 ed.). Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
Rabarijoely, S. (2000). Wykorzystanie badań dylatometrycznych do wyznaczania parametrów gruntów organicznych obciążeniem nasypem (PhD thesis). Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Warszawa [unpublished].
Rabarijoely, S. (2018). Dwa przykłady oceny osiadań budowli z wykorzystaniem badań dylatometrycznych (DMT). Acta Scientiarum Polonorum. Architectura, 17 (3), 103–119. https://doi.org/10.22630/ASPA.2018.17.3.33 (Crossref)
Rabarijoely, S. (2019a). A new method for the estimation of hydraulic permeability, coefficient of consolidation, and soil fraction based on the dilatometer tests (DMT). Studia Geotechnica et Mechanica, 41 (4), 212–222. (Crossref)
Rabarijoely, S. (2019b). A Bayesian approach in the evaluation of unit weight of mineral and organic soils based on dilatometer tests (DMT). Applied Sciences, 9 (18), 3779. https://doi.org/10.3390/app9183779 (Crossref)
Rasti, A., Adarmanabadi, H. R., Pineda, M. & Reinikainen, J. (2021). Evaluating the effect of soil particle characterization on internal friction angle. American Journal of Engineering and Applied Sciences, 14 (1), 129–138. https://doi.org/10.3844/ajeassp.2021.129.138 (Crossref)
Robertson, P. K. (2009). CPT-DMT Correlations. Journal of Geotechnical and Geoenvironmental Engineering, 135 (11), 1762–1771. (Crossref)
Robertson, P. K. (2015). Comparing CPT and Vs liquefaction triggering methods. Journal of Geotechnical and Geoenvironmental Engineering, 141 (9), 04015037. (Crossref)
Robertson, P. K. & Cabal, K. (2022). Guide to in situ testing. A concise and practical applications guide (2 ed.). Retrieved from: https://www.greggdrilling.com/wp-content/uploads/2022/11/In-Situ-Testing-Guide-2022.pdf [accessed: 02.09.2025].
Schmertmann, J. H. (1978). Guidelines for cone penetration test: performance and design (No. FHWA-TS-78-209). Washington, D.C.: United States Federal Highway Administration.
Schmertmann, J. H. (1982). A method for determining the friction angle in sands from the Marchetti dilatometer test (DMT). In Proceedings of the 2nd European Symposium on Penetration Testing (ESOPT 2), Amsterdam (pp. 853‒861). Rotterdam: A.A. Balkema.
Schmertmann, J. H. (1984). Comparing DMT with CPT in NC/OC sand bucket tests. DMT Digest, 4.
Schneider, J. A., Hoyos, L. Jr., Mayne, P. W., Macari, E. J. & Rix, G. J. (1999), Field and laboratory measurements of dynamic shear modulus of Piedmont residual soils. In Proceedings of the ASCE Annual Convention, Charlotte (GSP 92): Behavioral Characteristics of Residual Soils (pp. 12‒25). Reston, VA: American Society of Civil Engineers.
Szajna, W. S. (2015). Evaluation of the state of sandy soils on a sinkhole area with the use of noninvasive (MASW) and invasive (SDMT) tests. Engineering Transactions, 63 (1), 109‒131.
Szajna, W. S. & Gontaszewska, A. (2015). Problems with the interpretation of results of DPL, CPTU and DMT tests in non-textbook sandy soil of lacustrine origin. Osnovania i Fundamenty, 37, 27‒37.
Tankiewicz, M. & Bagińska, I. (2021). Assessment and verification of correlations in CPTu testing on the example of soil from the Wroclaw surroundings (Poland). Archives of Mining Sciences, 66 (2), 313‒327.
Tarnawski, M. (Ed.) (2020). Badanie podłoża budowli. Metody polowe. Warszawa: Wydawnictwo Naukowe PWN.
Truty, A. & Podleś, K. (2018). Numerical model of flat dilatometer test in cohesionless soils. In 4th International Symposium on Computational Geomechanics: ComGeo IV, 2‒4 May 2018, Assisi, Italy: book of extended abstracts (pp. 144‒145). Rhodes, Greece, Swansea: International Centre for Computational Engineering (IC2E).
Wierzbicki, J. (2010). Ocena prekonsolidacji podłoża metodami in situ w aspekcie jego genezy. Rozprawy Naukowe. Uniwersytet Przyrodniczy w Poznaniu, 410.
Wysokiński, L. (2007). Błędy systematyczne w rozpoznaniu geotechnicznym i ich wpływ na projektowanie budowlane. In XXIII Konferencja Naukowo-Techniczna: Awarie budowlane, Szczecin–Międzyzdroje (pp. 527‒539). Szczecin: Wydawnictwo Politechniki Szczecińskiej.
Zabielska-Adamska, K. (2019). Water content–density criteria for determining geomembrane–fly ash interface shear strength. In MATEC Web of Conferences (Vol. 262, p. 04005). EDP Sciences. https://doi.org/10.1051/matecconf/201926204005 (Crossref)
Zabielska-Adamska, K. (2020). Characteristics of compacted fly ash as a transitional soil. Materials, 13 (6), 1387. https://doi.org/10.3390/ma13061387 (Crossref)
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.