Sizing optimisation of steel truss based on algorithms

Main Article Content

Małgorzata Kurcjusz
Tomasz Sokół
Agnieszka Chudzińska


Keywords : structural optimisation, computer methods in structural engineering, truss optimisation, finite elements method
Abstract

Computational methods enable mathematical discretisation in structural design. Thus, thanks to the algorithmic design, the obtained results matrix presents various structurally efficient load-bearing elements. The main aim of this paper is to address the topic of material optimisation in truss bar structures with different approaches. The paper analyses and compares steel truss optimisation based on two software optimisation algorithms (MS Excel and Ansys Mechanical) using gradient and sub-problem methods. The key findings present how effective each method is in structural optimisation and concludes the present study with a roadmap to efficient structural designing of the load-bearing truss elements.

Article Details

How to Cite
Kurcjusz, M., Sokół, T., & Chudzińska, A. (2023). Sizing optimisation of steel truss based on algorithms. Acta Scientiarum Polonorum. Architectura, 22(1), 11–19. https://doi.org/10.22630/ASPA.2023.22.2
References

Burchart-Korol, D. (2013). Life cycle assessment of steel production in Poland: a case study. Journal of Cleaner Production, 54, 235–243. (Crossref)

Dillen, W., Lombaert, G. & Schevenels, M. (2021). A hybrid gradient-based/metaheuristic method for Eurocode-compliant size, shape and topology optimisation of steel structures. Engineering Structures, 239, 112137. (Crossref)

Dixit, S. & Stefańska, A. (2022). Bio-logic, a review on the biomimetic application in architectural and structural design. Ain Shams Engineering Journal, 14 (1), 101822. (Crossref)

Haftka, R. & Gürdal, Z. (2012). Elements of structural optimisation (Vol. 11). Springer Science & Business Media.

Kaveh, A. & Zaerreza, A. (2020). Size/layout optimisation of truss structures using shuffled shepherd optimisation method. Periodica Polytechnica Civil Engineering, 64 (2), 408–421. (Crossref)

Kirby, R., Logg, A., Scott, L. R. & Terrel, A. R. (2006). Topological Optimization of the Evaluation of Finite Element Matrices. SIAM Journal on Scientific Computing, 28 (1), 224–240. (Crossref)

Kurcjusz, M., Stefańska, A., Dixit, S. & Starzyk, A. (2022). The interdisciplinary designing in form, function, and structure coherency. Acta Scientiarum Polonorum. Architectura, 3 (21), 3–13. (Crossref)

Liu, J. & Xia, Y. (2022). A hybrid intelligent genetic algorithm for truss optimisation based on deep neutral network. Swarm and Evolutionary Computation, 73, 101120. (Crossref)

Logg, A. (2007). Automating the Finite Element Method. Archives of Computational Methods in Engineering, 14, 93–138. (Crossref)

Łacek, P. & Starzyk, A. (2022). Recycling of building materials: an overview. Acta Scientiarum Polonorum. Architectura, 3 (21), 67–76. (Crossref)

Pomponi, F. & Moncaster, A. (2016). Reducing embodied carbon in the built environment: A research agenda. International Conference on Sustainable Ecological Engineering Design for Society. https://doi.org/10.17863/CAM.7354

Renkavieski, C. & Parpinelli, R. S. (2021). Meta-heuristic algorithms to truss optimisation: Literature mapping and application. Expert Systems with Applications, 182. (Crossref)

Stefańska, A., Kurcjusz, M., Cygan, M., Buczkowska, J., Szmołda, K. & Morawska, P. (2022, January). The Interdisciplinary Approach to Free-Form Canopies Optimisation in Terms of Geometrical and Structural Logic Design. In Proceedings of the 7th International Conference on Architecture, Materials and Construction (pp. 110–119). Cham: Springer. (Crossref)

Stefańska, A. & Rokicki, W. (2022, July). Architectural Design Optimisation in Reticulated Free-Form Canopies. Buildings, 12 (8), 1–16. (Crossref)

Stolpe, M. (2016). Truss optimisation with discrete design variables: a critical review. Structural and Multidisciplinary Optimisation, 53 (2), 349–374. (Crossref)

Vijayan, D. S., Sivasuriyan, A., Parthiban, D., Jakimiuk, A., Bayat, H., Podlasek, A., Vaverková, M. D. & Koda, E. (2022). A Comprehensive Analysis of the Use of SFRC in Structures and Its Current State of Development in the Construction Industry. Materials, 15 (7012), 7012. (Crossref)

Wang, Y., Huang, J., Dong, W. S., Yan, J. C., Tian, C. H. & Mo, W. T. (2013). Two-stage based ensemble optimisation framework for large-scale global optimisation. European Journal of Operational Research, 228 (2), 308–320. (Crossref)

Webster, M. D., Meryman, H., Slivers, A., Rodriguez-Nikl, T., Lemay, L. & Simonen, K. (2012). Structure and carbon – how materials affect the climate. SEI Sustainability Committee, Carbon Working Group. ASCE.

Statistics

Downloads

Download data is not yet available.
Recommend Articles
Most read articles by the same author(s)