Main Article Content
Given increasingly stringent climate requirements, timber is once again emerging as a low-emission material for medium- and high-rise buildings; however, its inherent combustibility still limits widespread adoption. This paper critically analyses the MHolzBauRL – guidelines implemented in selected German Länder – as an integrated legal-technical instrument for designing multi-storey timber structures that meet the REI 60 and REI 90 fire-resistance classes. We outline the scope and hierarchy of the regulations, explain the principles in detail and compare them with DIN 4102. A review of completed projects reveals that the guidelines streamline approval procedures and enhance investor confidence in engineered timber. We conclude that the MHolzBauRL provides coherent and unambiguous criteria for the safe construction of tall timber buildings, and we highlight the need for broader regulatory harmonisation – including the potential adoption of similar variants in Poland.
Article Details
Bauministerkonferenz (2020). Model guideline on fire-safety requirements for highly fire-resistant timber components (M-HFHHolzR 2020).
Bauministerkonferenz (2021). Model guideline on fire-safety requirements for ventilation systems (M-LüAR).
Bauministerkonferenz (2024a). Model Building Code (Musterbauordnung – MBO).
Bauministerkonferenz (2024b). Model guideline on fire-safety requirements for service installations (MLAR).
Buchanan, A. H. & Abu, A. K. (2016). Structural Design for Fire Safety. Wiley. https://doi.org/10.1002/9781118700402
Churkina, G., Organschi, A., Reyer, C. P. O., Ruff, A., Vinke, K., Liu, Z., Reck, B. K., Graedel, T. E. & Schellnhuber, H. J. (2020). Buildings as a global carbon sink. Nature Sustainability, 3 (4), 269–276. https://doi.org/10.1038/s41893-019-0462-4
Deutsches Institut für Normung [DIN]. (2016). Fire behaviour of building materials and building components. Part 4. Synopsis and application of classified building materials, components and special components (DIN 4102-4:2016-05) [English version]. Beuth Verlag.
Deutsches Institut für Normung [DIN]. (2019). Fire classification of construction products and building elements. Part 1. Classification using data from reaction-to-fire tests (DIN EN 13501-1:2019-12) [English version]. Beuth Verlag.
Gustavsson, L. & Sathre, R. (2011). Energy and CO2 analysis of wood substitution in construction. Climatic Change, 105 (1–2), 129–153. https://doi.org/10.1007/s10584-010-9876-8
Hofmeister, S. (2022). Timber buildings: S, M, L. Detail.
Hopkin, D., Węgrzyński, W., Gorska, C., Spearpoint, M., Bielawski, J., Krenn, H., Sleik, T., Blondeau, R. & Stapf, G. (2024). Full-Scale Fire Experiments on Cross-Laminated Timber Residential Enclosures Featuring Different Lining Protection Configurations. Fire Technology, 60 (6), 3771–3803. https://doi.org/10.1007/s10694-024-01581-1
Huß, W., Kaufmann, M. & Merz, K. (2019). Building in timber: Room modules. Detail.
Kaufmann, H., Krötsch, S. & Winter, S. (2024). Atlas: Multi-storey timber construction – Fundamentals, construction, case studies. Detail.
Lennartz, M. W. & Jacob-Freitag, S. (2015). Neues Bauen mit Holz [New building with wood]. Birkhäuser.
Li, L., Lei, Y., Wu, S., Chen, J. & Yan, D. (2017). The health economic loss of fine particulate matter (PM2.5) in Beijing. Journal of Cleaner Production, 161, 1153–1161. https://doi.org/10.1016/j.jclepro.2017.05.029
Ljunggren, F., Fredriksson, M., Johansson, N. & Sasic Kalagasidis, A. (2025). Cross-laminated timber: a state-of-the-art review of moisture, fire, acoustics, and energy-related aspects. Wood Material Science & Engineering, 1–23. https://doi.org/10.1080/17480272.2025.2507145
O’Hegarty, R., Kinnane, O., Newell, J. & West, R. (2021). High performance, low carbon concrete for building cladding applications. Journal of Building Engineering, 43, 102566. https://doi.org/10.1016/j.jobe.2021.102566
Perković, N., Rajčić, V. & Barbalić, J. (2024). Fire Resilience of Load-Bearing Wall Made of Hollow Timber Elements. Fire, 7 (12), 433. https://doi.org/10.3390/fire7120433
Zang, X., Liu, W., Wu, D., Pan, X., Zhang, W., Bian, H. & Shen, R. (2023). Contemporary Fire Safety Engineering in Timber Structures: Challenges and Solutions. Fire, 7 (1), 2. https://doi.org/10.3390/fire7010002
Downloads
- Maja Sutkowska, Anna Stefańska, Magdalena Daria Vaverkova, Yasuhiro Matsui, Fostering sustainable urban development: integrating school areas to support the city’s green-blue infrastructure , Acta Scientiarum Polonorum. Architectura: Vol. 23 (2024)
- Małgorzata Kurcjusz, Karolina Krysińska, Michał Kosakiewicz, Maurycy Naliwajko, Zofia Jabłońska, Karolina Radecka, Ewa Grzegorzewska, Michał Sieczych, Eliza Ferenc-Pupek, Anna Stefańska, Integrating building information modelling (BIM) into construction: innovations, challenges, and global perspectives , Acta Scientiarum Polonorum. Architectura: Vol. 23 (2024)
- Peter Niemczak, Anna Stefańska, Why do Chicago buildings not retrofit? , Acta Scientiarum Polonorum. Architectura: Vol. 22 (2023)
- Anna Stefańska, Klaudia Liszewska, Małgorzata Kurcjusz, Katarzyna Jeleniewicz, Rohan Raj Das, GENERATIVE SHAPING IN SEARCH OF MATERIAL AND STRUCTURAL OPTIMISATION OF SMALL STRUCTURAL FORMS , Acta Scientiarum Polonorum. Architectura: Vol. 22 (2023)
- Anna Stefańska, Katarzyna Walasek, Małgorzata Kurcjusz, Barbara Warzecha, Joanna Koszewska, Piotr Niemczak, Contemporary design of sustainable campus spaces: A case study of the extension of the Water Centre at the Warsaw University of Life Sciences – SGGW , Acta Scientiarum Polonorum. Architectura: Vol. 24 (2025)
- Agata Muchla, Anna Stefańska, Exploring the benefits of open BIM standards for enhanced interoperability and efficiency in architecture, engineering, and construction projects , Acta Scientiarum Polonorum. Architectura: Vol. 24 (2025)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.