Musterholzbaurichtlinie (MHolzBauRL) as a tool for shaping multi-storey timber buildings in Germany

Main Article Content

Karina Kucharska
Anna Stefańska


Keywords : MHolzBauRL, timber construction, fire safety, multi-storey buildings
Abstract

Given increasingly stringent climate requirements, timber is once again emerging as a low-emission material for medium- and high-rise buildings; however, its inherent combustibility still limits widespread adoption. This paper critically analyses the MHolzBauRL – guidelines implemented in selected German Länder – as an integrated legal-technical instrument for designing multi-storey timber structures that meet the REI 60 and REI 90 fire-resistance classes. We outline the scope and hierarchy of the regulations, explain the principles in detail and compare them with DIN 4102. A review of completed projects reveals that the guidelines streamline approval procedures and enhance investor confidence in engineered timber. We conclude that the MHolzBauRL provides coherent and unambiguous criteria for the safe construction of tall timber buildings, and we highlight the need for broader regulatory harmonisation – including the potential adoption of similar variants in Poland.


 

Article Details

How to Cite
Kucharska, K., & Stefańska, A. (2025). Musterholzbaurichtlinie (MHolzBauRL) as a tool for shaping multi-storey timber buildings in Germany. Acta Scientiarum Polonorum. Architectura, 24(1), 302–315. https://doi.org/10.22630/ASPA.2025.24.21
References

Bauministerkonferenz (2020). Model guideline on fire-safety requirements for highly fire-resistant timber components (M-HFHHolzR 2020).

Bauministerkonferenz (2021). Model guideline on fire-safety requirements for ventilation systems (M-LüAR).

Bauministerkonferenz (2024a). Model Building Code (Musterbauordnung – MBO).

Bauministerkonferenz (2024b). Model guideline on fire-safety requirements for service installations (MLAR).

Buchanan, A. H. & Abu, A. K. (2016). Structural Design for Fire Safety. Wiley. https://doi.org/10.1002/9781118700402

Churkina, G., Organschi, A., Reyer, C. P. O., Ruff, A., Vinke, K., Liu, Z., Reck, B. K., Graedel, T. E. & Schellnhuber, H. J. (2020). Buildings as a global carbon sink. Nature Sustainability, 3 (4), 269–276. https://doi.org/10.1038/s41893-019-0462-4

Deutsches Institut für Normung [DIN]. (2016). Fire behaviour of building materials and building components. Part 4. Synopsis and application of classified building materials, components and special components (DIN 4102-4:2016-05) [English version]. Beuth Verlag.

Deutsches Institut für Normung [DIN]. (2019). Fire classification of construction products and building elements. Part 1. Classification using data from reaction-to-fire tests (DIN EN 13501-1:2019-12) [English version]. Beuth Verlag.

Gustavsson, L. & Sathre, R. (2011). Energy and CO2 analysis of wood substitution in construction. Climatic Change, 105 (1–2), 129–153. https://doi.org/10.1007/s10584-010-9876-8

Hofmeister, S. (2022). Timber buildings: S, M, L. Detail.

Hopkin, D., Węgrzyński, W., Gorska, C., Spearpoint, M., Bielawski, J., Krenn, H., Sleik, T., Blondeau, R. & Stapf, G. (2024). Full-Scale Fire Experiments on Cross-Laminated Timber Residential Enclosures Featuring Different Lining Protection Configurations. Fire Technology, 60 (6), 3771–3803. https://doi.org/10.1007/s10694-024-01581-1

Huß, W., Kaufmann, M. & Merz, K. (2019). Building in timber: Room modules. Detail.

Kaufmann, H., Krötsch, S. & Winter, S. (2024). Atlas: Multi-storey timber construction – Fundamentals, construction, case studies. Detail.

Lennartz, M. W. & Jacob-Freitag, S. (2015). Neues Bauen mit Holz [New building with wood]. Birkhäuser.

Li, L., Lei, Y., Wu, S., Chen, J. & Yan, D. (2017). The health economic loss of fine particulate matter (PM2.5) in Beijing. Journal of Cleaner Production, 161, 1153–1161. https://doi.org/10.1016/j.jclepro.2017.05.029

Ljunggren, F., Fredriksson, M., Johansson, N. & Sasic Kalagasidis, A. (2025). Cross-laminated timber: a state-of-the-art review of moisture, fire, acoustics, and energy-related aspects. Wood Material Science & Engineering, 1–23. https://doi.org/10.1080/17480272.2025.2507145

O’Hegarty, R., Kinnane, O., Newell, J. & West, R. (2021). High performance, low carbon concrete for building cladding applications. Journal of Building Engineering, 43, 102566. https://doi.org/10.1016/j.jobe.2021.102566

Perković, N., Rajčić, V. & Barbalić, J. (2024). Fire Resilience of Load-Bearing Wall Made of Hollow Timber Elements. Fire, 7 (12), 433. https://doi.org/10.3390/fire7120433

Zang, X., Liu, W., Wu, D., Pan, X., Zhang, W., Bian, H. & Shen, R. (2023). Contemporary Fire Safety Engineering in Timber Structures: Challenges and Solutions. Fire, 7 (1), 2. https://doi.org/10.3390/fire7010002

Statistics

Downloads

Download data is not yet available.
Recommend Articles
Most read articles by the same author(s)