Quantitative assessment of hydrological efficiency of rain garden design in the context of managing the volume and quality of storm effluent

Main Article Content

Мarina Kravchenko
Tetiana Tkachenko
Viktor Mileikovskyi
Yuliia Trach


Keywords : rain garden, storm drains, stormwater management, modelling, rain garden parameters
Abstract

Rain gardens are a popular element of green infrastructure, often integrated into the sponge city concept to address stormwater management issues. Such structures perform three main functions: reducing the volume of water runoff from the catchment area, reducing peak flows in the drainage system, which is critical for preventing overloading of the sewer network, and improving water quality, which contributes to the preservation of groundwater. The design of rain gardens is based on specific requirements and characteristics that determine their construction and calculation methods to achieve optimal parameters, such as area and depth. Scientometric analysis shows that significant research contributions are made by different countries, but most existing rain garden systems are based on general recommendations, which can lead to problems in their operation. The purpose of the work is to develop a model for calculating the main parameters of rain gardens and methods for assessing their hydrological efficiency in order to improve their implementation in the urban environment. A numerical model for calculating the effective area of a rain garden is presented, which considers one rain event and excludes overflow. Methods are proposed for evaluating three key functions of rain gardens in the context of stormwater management: a method for determining runoff reduction, a method for estimating annual runoff reduction, a method for peak runoff reduction, and a method for estimating total pollutant reduction.

Article Details

How to Cite
Kravchenko М. ., Tkachenko, T., Mileikovskyi, V., & Trach, Y. (2024). Quantitative assessment of hydrological efficiency of rain garden design in the context of managing the volume and quality of storm effluent. Acta Scientiarum Polonorum. Architectura, 23, 369–383. https://doi.org/10.22630/ASPA.2024.23.29
References

Auckland Regional Council (2003). TP10 Stormwater management devices: Design guideline manual. (2nd ed.). Auckland. Retrieved from: http://www.aucklandcity.govt.nz/council/documents/technicalpublications/TP10%20Stormwater%20management%20devices%20design%20guideline%20manual%202003.pdf [accessed: 17.03.2024].

Berland, A., Shiflett, S. A., Shuster, W. D., Garmestani, A. S., Goddard, H. C., Herrmann, D. L. & Hopton, M. E. (2017). The role of trees in urban stormwater management. Landscape and Urban Planning, 162, 167–177. https://doi.org/10.1016/j.landurbplan.2017.02.017 (Crossref)

Brown, R. A. & Hunt, W. F. (2011). Underdrain Configuration to Enhance Bioretention Exfiltration to Reduce Pollutant Loads. Journal of Environmental Engineering, 137 (11), 1082–1091. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000437 (Crossref)

Bruner, S. G., Palmer, M. I., Griffin, K. L. & Naeem, S. (2023). Planting design influences green infrastructure performance: Plant species identity and complementarity in rain gardens. Ecological Applications, 33 (7), e2902. https://doi.org/10.1002/eap.2902 (Crossref)

Coleman, S., Hurley, S., Rizzo, D., Koliba, C. & Zia, A. (2018). From the household to watershed: A cross-scale analysis of residential intention to adopt green stormwater infrastructure. Landscape and Urban Planning, 180, 195–206. https://doi.org/10.1016/j.landurbplan.2018.09.005 (Crossref)

Davis, A. P. & McCuen, R. H. (2005). Stormwater Management for Smart Growth. Springer. https://doi.org/10.1007/0-387-27593-2 (Crossref)

DeBusk, K. M. & Wynn, T. M. (2011). Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. Journal of Environmental Engineering, 137 (9), 800–808. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000388 (Crossref)

Gao, M., Wang, Z. & Yang, H. (2022). Review of Urban Flood Resilience: Insights from Scientometric and Systematic Analysis. International Journal of Environmental Research and Public Health, 19 (14), 8837. https://doi.org/10.3390/ijerph19148837 (Crossref)

Giese, E., Rockler, A., Shirmohammadi, A. & Pavao-Zuckerman, M. A. (2019). Assessing Watershed-Scale Stormwater Green Infrastructure Response to Climate Change in Clarksburg, Maryland. Journal of Water Resources Planning and Management, 145 (10), 05019015. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001099 (Crossref)

Green, D., O’Donnell, E., Johnson, M., Slater, L., Thorne, C., Zheng, S., Stirling, R., Chan, F. K. S., Li, L. & Boothroyd, R. J. (2021). Green infrastructure: The future of urban flood risk management? WIREs Water, 8 (6), e1560. https://doi.org/10.1002/wat2.1560 (Crossref)

Guerreiro, S., Glenis, V., Dawson, R. & Kilsby, C. (2017). Pluvial Flooding in European Cities – A Continental Approach to Urban Flood Modelling. Water, 9 (4), 296. https://doi.org/10.3390/w9040296 (Crossref)

Kravchenko, M., Trach, Y., Trach, R., Tkachenko, T. & Mileikovskyi, V. (2024a). Behaviour and Peculiarities of Oil Hydrocarbon Removal from Rain Garden Structures. Water, 16 (13), 1802. https://doi.org/10.3390/w16131802 (Crossref)

Kravchenko, M., Trach, Y., Trach, R., Tkachenko, T. & Mileikovskyi, V. (2024b). Improving the Efficiency and Environmental Friendliness of Urban Stormwater Management by Enhancing the Water Filtration Model in Rain Gardens. Water, 16 (10), 1316. https://doi.org/10.3390/w16101316 (Crossref)

Li, J. Q., Xiang, L. L., Che, W. & Ge, R. L. (2008). Design and Hydrologic Estimation Method of Multi-Purpose Rain Garden: Beijing Case Study. Low Impact Development for Urban Ecosystem and Habitat Protection (pp. 1–10). https://doi.org/10.1061/41009(333)67 (Crossref)

Morash, J., Wright, A., LeBleu, C., Meder, A., Kessler, R., Brantley, E. & Howe, J. (2019). Increasing Sustainability of Residential Areas Using Rain Gardens to Improve Pollutant Capture, Biodiversity and Ecosystem Resilience. Sustainability, 11 (12), 3269. https://doi.org/10.3390/su11123269 (Crossref)

Osheen & Singh, K. K. (2019). Rain Garden – A Solution to Urban Flooding: A Review. In W A. K. Agnihotri, K. Reddy & A. Bansal (Eds), Sustainable Engineering (Vol. 30, pp. 27–35). Singapore: Springer. https://doi.org/10.1007/978-981-13-6717-5_4 (Crossref)

Qi, Y., Chan, F. K. S., Thorne, C., O’Donnell, E., Quagliolo, C., Comino, E., Pezzoli, A., Li, L., Griffiths, J., Sang, Y. & Feng, M. (2020). Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water, 12 (10), 2788. https://doi.org/10.3390/w12102788 (Crossref)

Rezaei, A. R., Ismail, Z., Niksokhan, M. H., Dayarian, M. A., Ramli, A. H. & Shirazi, S. M. (2019). A Quantity–Quality Model to Assess the Effects of Source Control Stormwater Management on Hydrology and Water Quality at the Catchment Scale. Water, 11 (7), 1415. https://doi.org/10.3390/w11071415 (Crossref)

Shafique, M. (2016). A review of the bioretention system for sustainable storm water management in urban areas. Materials and Geoenvironment, 63 (4), 227–236. https://doi.org/10.1515/rmzmag-2016-0020 (Crossref)

Shafique, M. & Kim, R. (2017). Retrofitting the Low Impact Development Practices into Developed Urban areas Including Barriers and Potential Solution. Open Geosciences, 9 (1). https://doi.org/10.1515/geo-2017-0020 (Crossref)

Sharma, R. & Malaviya, P. (2021). Management of stormwater pollution using green infrastructure: The role of rain gardens. WIREs Water, 8 (2), e1507. https://doi.org/10.1002/wat2.1507 (Crossref)

Shuster, W., Darner, R., Schifman, L. & Herrmann, D. (2017). Factors Contributing to the Hydrologic Effectiveness of a Rain Garden Network (Cincinnati OH USA). Infrastructures, 2 (3), 11. https://doi.org/10.3390/infrastructures2030011 (Crossref)

Trach Y. (2020). Perspective method for removing heavy metals from underground waters of Western Ukraine. Acta Scientiarum Polonorum. Architectura, 19 (1), 85–92. (Crossref)

Tsentralna Heofizychna Observatoriya Imeni Borysa Sreznevskoho [Boris Sresnevsky Central Geophysical Observatory] website (2024). Available at http://cgo-sreznevskyi.kyiv.ua/uk

Wang, X., Zhang, J., Babovic, V. & Gin, K. Y. H. (2019). A comprehensive integrated catchment-scale monitoring and modelling approach for facilitating management of water quality. Environmental Modelling & Software, 120, 104489. https://doi.org/10.1016/j.envsoft.2019.07.014 (Crossref)

Wanitchayapaisit, C., Suppakittpaisarn, P., Charoenlertthanakit, N., Surinseng, V., Yaipimol, E. & Rinchumphu, D. (2022). Rain garden design for stormwater management in Chiang Mai, Thailand: A Research-through-Design Study. Nakhara: Journal of Environmental Design and Planning, 21 (3), 222. https://doi.org/10.54028/NJ202221222 (Crossref)

Ying, J., Zhang, X., Zhang, Y. & Bilan, S. (2022). Green infrastructure: Systematic literature review. Economic Research-Ekonomska Istraživanja, 35 (1), 343–366. https://doi.org/10.1080/1331677X.2021.1893202 (Crossref)

Zaręba, A., Krzemińska, A., Adynkiewicz-Piragas, M., Widawski, K., Van Der Horst, D., Grijalva, F. & Monreal, R. (2022). Water Oriented City – A ‘5 Scales’ System of Blue and Green Infrastructure in Sponge Cities Supporting the Retention of the Urban Fabric. Water, 14 (24), 4070. https://doi.org/10.3390/w14244070 (Crossref)

Zhang, L., Lu, Q., Ding, Y., Peng, P. & Yao, Y. (2018). Design and Performance Simulation of Road Bioretention Media for Sponge Cities. Journal of Performance of Constructed Facilities, 32 (5), 04018061. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001209 (Crossref)

Zhang, L., Ye, Z. & Shibata, S. (2020a). Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan. Sustainability, 12 (23), 9982. https://doi.org/10.3390/su12239982 (Crossref)

Zhang, Y., Zhao, W., Chen, X., Jun, C., Hao, J., Tang, X. & Zhai, J. (2020b). Assessment on the Effectiveness of Urban Stormwater Management. Water, 13 (1), 4. https://doi.org/10.3390/w13010004 (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles