Main Article Content
It is imperative to take pro-ecological actions that are beneficial to health, as well as adopt sustainable development practices in the face of the current environmental challenges facing humanity. It is crucial that environmental protection is implemented by all people on Earth, because the future is worrying – especially for what will be left for future generations. Green building solutions are being implemented worldwide, but not always in an appropriate manner. All green architecture integrates sustainable development and conservation, regardless of location. This article summarises and characterises the concept of the 6E (economic, energy-efficient, ecological, elastic, aesthetic, ergonomic) ecological building concept and the 3R (reduce, reuse, recycle) principle. It also presents an analysis of two ecological buildings in Poland. The first is a wooden building located in the village of Podgać, which serves as an example of combining modern design and ecology. It was built in harmony with nature and blends in with the natural environment of the forest. A half-timbered house in the village of Jarzębia Łąka is the second example where traditional construction, modern technical solutions and environmental protection come together. The presented project examples were examined in terms of ecological building principles and then compared with the 6E concept and the 3R principle. This paper presents a comprehensive study of two distinct eco-friendly building structures. The investigation covers technical characterisation, compliance with the 6E concept, comparison of ecological efficiency, and conclusions with recommendations. The Dom Baby Jagi [Baba Jaga House] in the village Podgać showcases a harmonious blend of simplicity, functionality, and economy, utilising wood with insulation for year-round habitation. It integrates renewable energy sources and rainwater harvesting, contributing to its ecological sustainability. Meanwhile, the half-timbered building in Jarzębia Łąka employs clay-straw bricks for construction, emphasising economic and environmental benefits with vapour-permeable walls and efficient insulation. Both structures exemplify ergonomic design, eco-friendly construction practices, and aesthetic integration with their natural surroundings. These findings underscore the importance of incorporating environmentally conscious solutions in modern architecture to address contemporary environmental challenges and promote sustainable development.
Article Details
Aadal, H., Rad, K. G., Fard, A. B., Sabet, P. G. P. & Harirchian, E. (2013). Implementing 3R concept in construction waste management at construction site. Journal of Applied Environmental and Biological Sciences, 3 (10), 160–166.
Akpan, E. I., Wetzel, B. & Friedrich, K. (2021). Eco-friendly and sustainable processing of wood-based materials. Green Chemistry, 23 (6), 2198–2232. https://doi.org/10.1039/D0GC04430J (Crossref)
Almusaed, A. & Almssad, A. (2022). Sustainable wooden skyscrapers for the future cities. In Wood Industry-Past, Present and Future Outlook. IntechOpen. (Crossref)
Alqahtani, F. K., Abotaleb, I. S. & ElMenshawy, M. (2021). Life cycle cost analysis of lightweight green concrete utilizing recycled plastic aggregates. Journal of Building Engineering, 40, 102670. https://doi.org/10.1016/j.jobe.2021.102670 (Crossref)
Amran, M., Fediuk, R., Murali, G., Avudaiappan, S., Ozbakkaloglu, T., Vatin, N., Karelina, M., Klyuev, S. & Gholampour, A. (2021). Fly ash-based eco-efficient concretes: A comprehensive review of the short-term properties. Materials, 14 (15), 4264. (Crossref)
Assmann, A. (2018). The future of cultural heritage and its challenges. In Cultural Sustainability (pp. 25–35). Routledge. (Crossref)
Awad, T., Guardiola, J. & Fraíz, D. (2021). Sustainable construction: Improving productivity through lean construction. Sustainability, 13 (24), 13877. (Crossref)
Balcerowska, M. (2020, 6 January). Wapno hydratyzowane. Jaka jest funkcja wapna hydratyzowanego w zaprawach budowlanych? Murator Plus. Retrieved from: https://www.muratorplus.pl/technika/chemia-budowlana/wapno-hydratyzowane-jaka-jest-funkcja-wapna-hydratyzowanego-w-zaprawach-budowlanych-aa-9Lr3-BdQZ-aWix.html [accessed: 23.04.2024].
Becerik-Gerber, B., Lucas, G., Aryal, A., Awada, M., Berges, M., Billington, S. L., Boric-Lubecke, O., Ghahramani, A., Heydarian, A., Jazizadeh, F., Liu, R., Zhu, R., Marks, F., Roll, S., Seyedrezaei, M., Taylor, J. E., Höelscher, C., Khan, A., ... Zhao, J. (2022). Ten questions concerning human-building interaction research for improving the quality of life. Building and Environment, 226, 109681. https://doi.org/10.1016/j.buildenv.2022.109681 (Crossref)
Berg, A. B., Adamcová, D., Barroso, P. M., Šourková, M. & Vaverková, M. D. (2020). The impact of green roofs on the quality of rainwater and operational problems – case study. Acta Scientiarum Polonorum. Architectura, 19 (1), 31–41. https://doi.org/10.22630/aspa.2020.19.1.4 (Crossref)
Berg, A. B., Hurajová, E., Černý, M. & Winkler, J. (2022). Anthropogenic Ecosystem of Green Roofs from the Perspective Rainwater Management. Acta Scientiarum Polonorum. Architectura, 21 (1), 9–19. https://doi.org/10.22630/aspa.2022.21.1.2 (Crossref)
Bielenis, S. & Swalski, R. (2021). Przykłady budownictwa z drewna księżycowego. Przegląd Budowlany, 92 (11–12), 115–118.
Bihari, S. (2023). Cultural Heritage and Indigenous Knowledge: Reviving Traditions for Future Generations. Sustainable Development Goals in SAARC Countries: Key Issues, Opportunities and Challenges, 1, 24–32.
Bizzarri, S., Degli Esposti, M., Careccia, C., De Gennaro, T., Tangheroni, E. & Avanzini, N. (2020). The use of traditional mud-based masonry in the restoration of the iron age site of Salūt (Oman). A way towards mutual preservation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 44, 1081–1088. (Crossref)
Bukowski, H. & Fabrycka, W. (2019). Budownictwo w obiegu zamkniętym w praktyce. Raport. Warszawa: INNOWO.
Chang, Z., Long, G., Zhou, J. L. & Ma, C. (2020). Valorization of sewage sludge in the fabrication of construction and building materials: A review. Resources, Conservation and Recycling, 154, 104606. (Crossref)
Chin, A. (2010, 18 February). Musgum earth architecture. Designboom. Retrieved from: https://www.designboom.com/architecture/musgum-earth-architecture [accessed: 23.04.2024].
Coalition of 5 Fractions (2022). Reduce Reuse Recycle – 3R. Retrieved from: https://5frakcji.pl/tydzien-3r/ [accessed: 23.04.2024].
Engelen, L., Rahmann, M. & Jong, E. de (2022). Design for healthy ageing – the relationship between design, well-being, and quality of life: a review. Building Research & Information, 50 (1–2), 19–35. https://doi.org/10.1080/09613218.2021.1984867 (Crossref)
Ganivet, E. (2020). Growth in human population and consumption both need to be addressed to reach an ecologically sustainable future. Environment, Development and Sustainability, 22 (6), 4979–4998. (Crossref)
Ganou Koungang, B. M., Courard, L., Tatchum Defo, U., Ndapeu, D., Njeugna, E. & Attia, S. (2023). Evaluating Thermal Performance and Environmental Impact of Compressed Earth Blocks with Cocos and Canarium Aggregates: A Study in Douala, Cameroon. International Journal of Engineering Research in Africa, 67, 49–66. (Crossref)
Hall, M. (2020). Exploring frameworks for a history of earth building in Aotearoa New Zealand. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 44, 969–976. (Crossref)
Hasper, W., Kirtschig, T., Siddall, M., Johnston, D., Vallentin, G. & Harvie-Clark, J. (2021). Long-term performance of Passive House buildings. Energy Efficiency, 14 (1), 5. https://doi.org/10.1007/s12053-020-09913-0 (Crossref)
Islam, M. S., Elahi, T. E., Shahriar, A. R. & Mumtaz, N. (2020). Effectiveness of fly ash and cement for compressed stabilized earth block construction. Construction and Building Materials, 255, 119392. (Crossref)
JWA (2023, 5 May). Co to jest zrównoważone budownictwo? Retrieved from: https://jw-a.pl/wiedza/co-to-jest-zrownowazone-budownictwo [accessed: 23.04.2024].
Kaliszak, R. (2019). Dom pasywny drewniany czy murowany: jaką wybrać technologię budowy? Murator. Retrieved from: https://muratordom.pl/budowa/dom-energooszczedny/dom-pasywny-drewniany-czy-murowany-jaka-wybrac-technologie-budowy-aa-tF1M-Emz3-sKP7.html [accessed: 23.04.2024].
Kang, J., Zhang, X., Zhu, X. & Zhang, B. (2021). Ecological security pattern: A new idea for balancing regional development and ecological protection. A case study of the Jiaodong Peninsula, China. Global Ecology and Conservation, 26, e01472. (Crossref)
Khani, N., Manesh, M. H. K. & Onishi, V. C. (2023). Optimal 6E design of an integrated solar energy-driven polygeneration and CO2 capture system: a machine learning approach. Thermal Science and Engineering Progress, 38, 101669. https://doi.org/10.1016/j.tsep.2023.101669 (Crossref)
Kietliński, W. (2015). Budownictwo ekologiczne i energooszczędne budownictwem przyszłości. Przegląd Budowlany, 86 (2), 36–41.
Koop, S. H. & Leeuwen, C. J. van (2017). The challenges of water, waste and climate change in cities. Environment, Development and Sustainability, 19 (2), 385–418. (Crossref)
Kownacki, D. & Błaszczyński, T. (2019). Drewno księżycowe jako materiał konstrukcyjny. Przegląd Budowlany, 90 (10), 85–89.
Malińska, A. (2022). Documentation of the architectural-building project of the half-timbered building in Jarzębia Łąka [unpublished].
Maraveas, C. (2020). Production of sustainable construction materials using agro-wastes. Materials, 13 (2), 262. (Crossref)
Mariotti, N., Bonomo, M., Fagiolari, L., Barbero, N., Gerbaldi, C., Bella, F. & Barolo, C. (2020). Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry, 22 (21), 7168–7218. https://doi.org/10.1039/D0GC01148G (Crossref)
Mitra, S. & Datta, P. P. (2014). Adoption of green supply chain management practices and their impact on performance: an exploratory study of Indian manufacturing firms. International Journal of Production Research, 52 (7), 2085–2107. https://doi.org/10.1080/00207543.2013.849014 (Crossref)
Morel, J. C., Charef, R., Hamard, E., Fabbri, A., Beckett, C. & Bui, Q. B. (2021). Earth as construction material in the circular economy context: practitioner perspectives on barriers to overcome. Philosophical Transactions of the Royal Society B, 376 (1834), 20200182. (Crossref)
Mushtaha, E., Salameh, T., Kharrufa, S., Mori, T., Aldawoud, A., Hamad, R. & Nemer, T. (2021). The impact of passive design strategies on cooling loads of buildings in temperate climate. Case Studies in Thermal Engineering, 28, 101588. (Crossref)
Narloch, P. L. (2017). Ziemia ubijana stabilizowana cementem jako konstrukcyjny materiał budowlany w klimacie umiarkowanym (doctoral dissertation). Szkoła Główna Gospodarstwa Wiejskiego w Warszwie, Warszawa.
Niiler, E. R. I. C. (2022, 11 April). Wooden Skyscrapers Are on the Rise. Wall Street Journal, 11.
Owen, A. M., Murtagh, N. & Simpson, K. (2023). 11. Understanding what shapes pro-environmental behaviours in small construction firms. In B. Gatersleben (Ed.), Handbook on Pro-Environmental Behaviour Change (Chapter 11, p. 184-197). Cheltenham: Edward Elgar Publishing. (Crossref)
Podwysocka, Z. (2017, 1 January). Ze słomy i z drewna. Murator, 1.
POLE Architekci [n.d.]. Dom Baby Jagi. Retrieved from: https://dombabyjagi.pl/#idea [accessed: 23.04.2024].
Polskie Domy Drewniane SA (19 August). Drewniane drapacze chmur, czyli TOP5 budynków z drewna na świecie. PolskiPrzemysł.com.pl. Retrieved from: https://polskiprzemysl.com.pl/budownictwo/najwyzsze-budynki-drewniane-na-swiecie [accessed: 23.04.2024].
Quah, G. (2013, 26 December). Passive timber house in Austria by Juri Troy Architects. Dezeen. Retrieved form: https://www.dezeen.com/2013/12/26/passive-timber-house-in-austria-by-juri-troy-architects [accessed: 23.04.2024].
Riva, A., Rebecchi, A., Capolongo, S. & Gola, M. (2022). Can homes affect well-being? A scoping review among housing conditions, indoor environmental quality, and mental health outcomes. International Journal of Environmental Research and Public Health, 19 (23), 15975. https://doi.org/10.3390/ijerph192315975 (Crossref)
Rolmarket.pl (2019). Deszczówka: charakterystyka, zastosowanie i zalety magazynowania. Retrieved from: https://rolmarket.pl/blog/deszczowka-charakterystyka-zastosowanie-zalety-magazynowania [accessed: 23.04.2024].
Şahin, Ş. & Kılıç, A. (2024). Comparison of the effectiveness of project-based 6E learning and problem-based quantum learning: Solomon four-group design. Journal of Research in Innovative Teaching & Learning. https://doi.org/10.1108/JRIT-09-2023-0139 (Crossref)
Samadi, M., Huseien, G. F., Mohammadhosseini, H., Lee, H. S., Lim, N. H. A. S., Tahir, M. M. & Alyousef, R. (2020). Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825. https://doi.org/10.1016/j.jclepro.2020.121825 (Crossref)
Scharlemann, J. P., Brock, R. C., Balfour, N., Brown, C., Burgess, N. D., Guth, M. K., ... Kapos, V. (2020). Towards understanding interactions between Sustainable Development Goals: The role of environment–human linkages. Sustainability Science, 15, 1573–1584. (Crossref)
Schnieders, J., Eian, T. D., Filippi, M., Florez, J., Kaufmann, B., Pallantzas, S., ... Yeh, S. C. (2020). Design and realisation of the Passive House concept in different climate zones. Energy Efficiency, 13 (8), 1561–1604. (Crossref)
Schroeder, P., Anggraeni, K. & Weber, U. (2019). The relevance of circular economy practices to the sustainable development goals. Journal of Industrial Ecology, 23 (1), 77–95. https://doi.org/10.1111/jiec.12732 (Crossref)
Schubert, M., Panzarasa, G. & Burgert, I. (2022). Sustainability in wood products: a new perspective for handling natural diversity. Chemical Reviews, 123 (5), 1889–1924. https://doi.org/10.1021/acs.chemrev.2c00360 (Crossref)
Sharma, N. K. (2020). Sustainable building material for green building construction, conservation and refurbishing. International Journal of Advanced Science and Technology, 29 (10S), 5343–5350.
Silva, G., Kim, S., Aguilar, R. & Nakamatsu, J. (2020). Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132. (Crossref)
Skowroński, M. (2015). Rekonsumpcja materiałowa w architekturze (doctoral dissertation). Politechnika Wrocławska, Wrocław.
Sood, H., Kumar, R., Jena, P. C. & Joshi, S. K. (2023). Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete. Materials Today: Proceedings [in press, corrected proof]. https://doi.org/10.1016/j.matpr.2023.09.037 (Crossref)
Sotayo, A., Bradley, D., Bather, M., Sareh, P., Oudjene, M., El-Houjeyri, I., ... Guan, Z. (2020). Review of state of the art of dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications. Developments in the Built Environment, 1, 100004. (Crossref)
SSH (2024). Oman. Junoot Eco Resort. Sshic.com Retrieved from: https://www.sshic.com/our-projects/junoot-eco-resort [accessed: 23.04.2024].
Stach, R. (2020, 25 June). Wieżowiec Mjøstårnet / Norwegia. Architektura Murator. Retrieved from: https://architektura.muratorplus.pl/technika/wiezowiec-mjostarnet-norwegia-aa-yUS8-cSXd-DBmr.html [accessed: 24.04.2024].
Sutarja, I. N. & Putra, I. D. G. A. D. (2022). Ergonomics in the Contemporary Balinese Building: the Integration between Architectural and Structural Aspects. Civil Engineering and Architecture, 10 (2), 501–512. (Crossref)
Tang, Z., Li, W., Tam, V. W. & Xue, C. (2020). Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resources, Conservation & Recycling: X, 6, 100036. http://hdl.handle.net/10453/143558 (Crossref)
Thoma Holz100 Canada (2024a). Ferienhaus 4 [photography]. Retrieved from: https://www.holz100canada.com/uploads/9/5/8/7/95874198/ferienhaus4-873x500_orig.jpg [accessed: 23.04.2024].
Thoma Holz100 Canada (2024b). Ferienhaus 5 [photography]. Retrieved from: https://www.holz100canada.com/uploads/9/5/8/7/95874198/published/ferienhaus5-855x500.jpeg?1501176895 [accessed: 23.04.2024].
Tulonen, L., Karjalainen, M. & Ilgin, H. E. (2021). Tall wooden residential buildings in Finland: What are the key factors for design and implementation? In Engineered Wood Products for Construction. InTech Open Access Publisher. (Crossref)
Ulewicz, M. (2021). Gospodarka odpadami budowlanymi i rozbiórkowymi w europejskiej strategii zrównoważonego rozwoju – stan i perspektywa. Przegląd Budowlany, 92 (10), 49–53.
Vaverkova, M., Matsui, Y. & Vaverka, I. (2023). Mottainai in civil engineering – A message from Japan. Acta Scientiarum Polonorum. Architectura, 22, 205–217. (Crossref)
Victar, H. C., Perera, B. A. K. S., Palihakkara, A. D. & Dewagod, K. G. (2023). Roles and competencies of quantity surveyors in achieving a circular built environment: an investigation according to 3R principles. Smart and Sustainable Built Environment [ahead-of-print]. https://doi.org/10.1108/SASBE-10-2022-0231 (Crossref)
Vollset, S. E., Goren, E., Yuan, C. W., Cao, J., Smith, A. E., Hsiao, T., Bisignano, C., Azhar, G. A., Castro, E., Chalek, J., Dolgert, A. J., Frank, T., Fukutaki, K., Hay, S. I., Lozano, R., Mokdad, A. H., Nandakumar, V., Pierce, M., … Murray, C. J. (2020). Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. The Lancet, 396 (10258), 1285–1306. https://doi.org/10.1016/S0140-6736(20)30677-2 (Crossref)
Walenda, B. & Starczyk-Kołbyk, A. (2022). Buildings of the future: green and energy-efficient construction processes. Rzeczoznawca, 1, 37–40. https://doi.org/10.37105/enex.2022.1.04 (Crossref)
Wati, E., Bidoung, J. C., Damfeu, J. C. & Meukam, P. (2020). Energy performance of earthen building walls in the equatorial and tropical climates: a case study of Cameroon. Energy Efficiency, 13, 735–750. (Crossref)
Welch, S., Obonyo, E. & Memari, A. (2023). A review of the previous and current challenges of passive house retrofits. Building and Environment, 245, 110938. https://doi.org/10.1016/j.buildenv.2023.110938 (Crossref)
Yang, M., Chen, L., Wang, J., Msigwa, G., Osman, A. I., Fawzy, S., Rooney, D. W. & Yap, P.-S. (2023). Circular economy strategies for combating climate change and other environmental issues. Environmental Chemistry Letters, 21 (1), 55–80. (Crossref)
Yang, S., Cho, H. M., Yun, B. Y., Hong, T. & Kim, S. (2021). Energy usage and cost analysis of passive thermal retrofits for low-rise residential buildings in Seoul. Renewable and Sustainable Energy Reviews, 151, 111617. https://doi.org/10.1016/j.rser.2021.111617 (Crossref)
Zhang, C., Hu, M., Di Maio, F., Sprecher, B., Yang, X. & Tukker, A. (2022). An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Science of the Total Environment, 803, 149892. (Crossref)
Zhang, D. & Tu, Y. (2021). Green building, pro-environmental behavior and well-being: Evidence from Singapore. Cities, 108, 102980. (Crossref)
Downloads
- Joanna Pietrzak, Opportunities of building tall and green – an overview from a European perspective , Acta Scientiarum Polonorum. Architectura: Vol. 23 (2024): In progress
You may also start an advanced similarity search for this article.
- Maja Sutkowska, Anna Stefańska, Magdalena Daria Vaverkova, Yasuhiro Matsui, Fostering sustainable urban development: integrating school areas to support the city’s green-blue infrastructure , Acta Scientiarum Polonorum. Architectura: Vol. 23 (2024): In progress
- Magdalena Daria Vaverková, ASSESSMENT OF SELECTED LANDFILL IMPACTS ON SELECTED SEGMENTS OF THE ENVIRONMENT – A CASE STUDY , Acta Scientiarum Polonorum. Architectura: Vol. 22 (2023)
- Anna Stefańska, Małgorzata Kurcjusz, Karolina Krysińska, Michał Kosakiewicz, Maurycy Naliwajko, Zofia Jabłońska, Karolina Radecka, Ewa Grzegorzewska, Michał Sieczych, Eliza Ferenc-Pupek, Integrating building information modelling (BIM) into construction: innovations, challenges, and global perspectives , Acta Scientiarum Polonorum. Architectura: Vol. 23 (2024): In progress
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.