Environmental and architectural aspects of wooden construction: a comparative analysis of selected issues of single-family housing in Poland and Portugal

Main Article Content

Agnieszka Starzyk
Nuno D. Cortiços
Carlos C. Duarte
Przemysław Łacek


Keywords : wooden architecture, wooden construction, single-family house, climate crisis, sustainable development, circular economy
Abstract

In the second half of the 20th century, it seemed that wooden architecture would be replaced by other, increasingly used, technologies. Wood was primarily used in hybrid systems, rather than as the dominant construction and finishing material. However, the turn of the 20th and 21st centuries reversed this trend. There is now a growing interest in wooden structures and finishes. Wood is becoming a “fashionable” material. This shift is influenced by new technologies that provide innovative construction possibilities, as well as by new methods of protecting wood. Wood is a renewable, ecological material with a small built-in carbon footprint, making it easy to recycle and suitable for a circular economy. The aim of the study is to compare the features of wooden single-family houses in Poland and Portugal. The methods necessary for this purpose were employed: critical analysis, observation without intervention and case studies to compare contemporary architectural trends. The results of research on current trends in shaping wooden single-family architecture allowed for drawing conclusions regarding formal, functional and pro-environmental solutions.

Article Details

How to Cite
Starzyk, A., Nuno D. Cortiços, Carlos C. Duarte, & Przemysław Łacek. (2024). Environmental and architectural aspects of wooden construction: a comparative analysis of selected issues of single-family housing in Poland and Portugal . Acta Scientiarum Polonorum. Architectura, 23, 304–318. https://doi.org/10.22630/ASPA.2024.23.23
References

Almeida De Araujo, V., Cortez-Barbosa, J., Garcia, J. N., Gava, M., Laroca, C. & César, S. F. (2016). Woodframe: Light Framing Houses for Developing Countries. Revista de la Construcción, 15, 78–87. https://doi.org/10.4067/S0718-915X2016000200008 (Crossref)

Almeida, M., Barbosa, R. & Malheiro, R. (2020). Effect of Embodied Energy on Cost-Effectiveness of a Prefabricated Modular Solution on Renovation Scenarios in Social Housing in Porto, Portugal. Sustainability, 12, 1631. https://doi.org/10.3390/su12041631 (Crossref)

Alves, S. (2022). Divergence in Planning for Affordable Housing: A Comparative Analysis of England and Portugal. Progress in Planning, 156, 100536. 10.1016/j.progress.2020.100536 (Crossref)

Amiri, A., Ottelin, J., Sorvari, J. & Junnila, S. (2020). Cities as Carbon Sinks – Classification of Wooden Buildings. Environmental Research Letters, 15, 094076. https://doi.org/10.1088/1748-9326/aba134 (Crossref)

Araujo, V. A. D., Vasconcelos, J. S., Cortez-Barbosa, J., Morales, E. A. M., Gava, M. & Garcia, J. N. (2022). Can timber houses be productively faster to build than other buildings? Revista Árvore, 46, e4623. https://doi.org/10.1590/1806-908820220000023 (Crossref)

Arlet, J. L. (2021). Innovative Carpentry and Hybrid Joints in Contemporary Wooden Architecture. Arts, 10, 64. https://doi.org/10.3390/arts10030064 (Crossref)

Balasbaneh, A. T. & Sher, W. (2021). Comparative Sustainability Evaluation of Two Engineered Wood-Based Construction Materials: Life Cycle Analysis of CLT versus GLT. Building and Environment, 204, 108112. https://doi.org/10.1016/j.buildenv.2021.108112 (Crossref)

Börjesson, P. & Gustavsson, L. (2000). Greenhouse Gas Balances in Building Construction: Wood versus Concrete from Life-Cycle and Forest Land-Use Perspectives. Energy Policy, 28, 575–588. https://doi.org/10.1016/S0301-4215(00)00049-5 (Crossref)

Branco, R. & Alves, S. (2020). Urban Rehabilitation, Governance, and Housing Affordability: Lessons from Portugal. Urban Research & Practice, 13, 157–179. https://doi.org/10.1080/17535069.2018.1510540 (Crossref)

Brandão De Vasconcelos, A., Pinheiro, M.D., Manso, A. & Cabaço, A. (2015). A Portuguese Approach to Define Reference Buildings for Cost-Optimal Methodologies. Applied Energy, 140, 316–328. https://doi.org/10.1016/j.apenergy.2014.11.035 (Crossref)

Buchanan, A. H. & Levine, S. B. (1999). Wood-Based Building Materials and Atmospheric Carbon Emissions. Environmental Science & Policy, 2, 427–437. https://doi.org/10.1016/S1462-9011(99)00038-6 (Crossref)

Coelho, A. & Brito, J. D. (2023). Environmental Analysis of a Construction and Demolition Waste Recycling Plant in Portugal – Part I: Energy Consumption and CO2 Emissions. Waste Management, 33, 1258–1267. https://doi.org/10.1016/j.wasman.2013.01.025 (Crossref)

Correia Guedes, M., Pinheiro, M. & Manuel Alves, L. (2009). Sustainable Architecture and Urban Design in Portugal: An Overview. Renewable Energy, 34, 1999–2006. https://doi.org/10.1016/j.renene.2009.02.014 (Crossref)

De Araujo, V. A., Cortez-Barbosa, J., Gava, M., Garcia, J. N., Souza, A. J. D. D., Savi, A. F., Morales, E. A. M., Molina, J. C., Vasconcelos, J. S., Christoforo, A. L. & Lahr, F. A. R. (2016). Classification of Wooden Housing Building Systems. BioResources, 11, 7889–7901. https://doi.org/10.15376/biores.11.3.DeAraujo (Crossref)

Departamento de Edifícios Núcleo de Arquitectura e Urbanismo (2011). Caracterização Da Oferta De Casas De Madeira Em Portugal Inquérito Às Empresas de Projecto, Fabrico, Construção e Comercialização. Lisbon.

Dukarska, D. & Mirski, R. (2023). Wood-Based Materials in Building. Materials, 16, 2987, https://doi.org/10.3390/ma16082987 (Crossref)

European Association for Architectural Education [EAAE], (2022). Charter on Architectural Research (update March 2022). Retrieved from: https://www.eaae.be/wp-content/uploads/2022/08/EAAE-Charter-on-Architectural-Research-2022-update-version-130722.pdf [accessed: 01.07.2024].

Food and Agriculture Organization of the United Nations [FAO], (2018). FAO Yearbook of Forest Products. Rome. Retrieved from: https://www.fao.org/3/cb0513m/CB0513M.pdf [accessed: 01.07.2024].

Forest Europe (2020). State of Europe’s Forests 2020. Ministerial Conference on the Protection of Forests in Europe. Bratislava: Forest Europe Liaison Unit Bratislava. https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf [accessed: 01.07.2024].

Geng, A., Yang, H., Chen, J. & Hong, Y. (2017). Review of Carbon Storage Function of Harvested Wood Products and the Potential of Wood Substitution in Greenhouse Gas Mitigation. Forest Policy and Economics, 85, 192–200. https://doi.org/10.1016/j.forpol.2017.08.007 (Crossref)

Główny Urząd Statystyczny. Available online: www.stat.gov.pl.

Grygierek, K. & Ferdyn-Grygierek, J. (2022). Analysis of the Environmental Impact in the Life Cycle of a Single-Family House in Poland. Atmosphere, 13, 245. https://doi.org/10.3390/atmos13020245 (Crossref)

Grygierek, K., Ferdyn-Grygierek, J., Gumińska, A., Baran, Ł., Barwa, M., Czerw, K., Gowik, P., Makselan, K., Potyka, K. & Psikuta, A. (2020). Energy and Environmental Analysis of Single-Family Houses Located in Poland. Energies, 13, 2740. https://doi.org/10.3390/en13112740 (Crossref)

Gustavsson, L., Pingoud, K. & Sathre, R. (2006). Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-Framed Buildings. Mitigation Adaptation Strategies Global Change, 11, 667–691. https://doi.org/10.1007/s11027-006-7207-1 (Crossref)

Heräjärvi, H. (2019). Wooden Buildings as Carbon Storages – Mitigation or Oration? Wood Material Science & Engineering, 14, 291–297. https://doi.org/10.1080/17480272.2019.1635205 (Crossref)

Høibø, O., Hansen, E. & Nybakk, E. (2015). Building Material Preferences with a Focus on Wood in Urban Housing: Durability and Environmental Impacts. Canadian Journal of Forest Research, 45, 1617–1627. https://doi.org/10.1139/cjfr-2015-0123 (Crossref)

Instituto Nacional de Estatística (2022). Estatísticas Da Construção e Habitação – 2022. Retrieved from: https://www.ine.pt/ngt_server/attachfileu.jsp?look_parentBoui=620424852&att_display=n&att_download=y [accessed: 01.07.2024].

Instituto Nacional de Estatistica. Available online: www.ine.pt.

Kaziolas, D. N., Zygomalas, I., Stavroulakis, G. E. & Baniotopoulos, C. C. (2013). Environmental Impact Assessment of the Life Cycle of a Timber Building. In Proceedings of the Fourteenth International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Press, Stirlingshire, UK 2013 (Paper 149). https://doi.org/10.4203/ccp.102.149 (Crossref)

Krzosek, S. & Kłosińska, T. (2021). CLT – Material for the Measure of the Future. Annals of WULS – SGGW. Forestry and Wood Technology, 114, 76–85. https://doi.org/10.5604/01.3001.0015.2377 (Crossref)

Lähtinen, K., Harju, C. & Toppinen, A. (2019). Consumers’ Perceptions on the Properties of Wood Affecting Their Willingness to Live in and Prejudices against Houses Made of Timber. Wood Material Science & Engineering, 14, 325–331. https://doi.org/10.1080/17480272.2019.1615548 (Crossref)

Lechón, Y., La Rúa, C. D. & Lechón, J. I. (2021). Environmental Footprint and Life Cycle Costing of a Family House Built on CLT Structure. Analysis of Hotspots and Improvement Measures. Journal of Building Engineering, 39, 102239. https://doi.org/10.1016/j.jobe.2021.102239 (Crossref)

Lee, T. M., Markowitz, E. M., Howe, P. D., Ko, C-Y. & Leiserowitz, A. A. (2015). Predictors of Public Climate Change Awareness and Risk Perception around the World. Nature Climae Change, 5, 1014–1020. https://doi.org/10.1038/nclimate2728 (Crossref)

Lerink, B. J. W., Schelhaas, M-J., Schreiber, R., Aurenhammer, P., Kies, U., Vuillermoz, M., Ruch, P., Pupin, C., Kitching, A., Kerr, G., Sing, L., Calvert, A., Dhubháin, A. N., Nieuwenhuis, M., Vayreda, J., Reumerman, P., Gustavsonn, G., Jakobsson, R., Little, D., … & Nabuurs, G-J. (2023). How Much Wood Can We Expect from European Forests in the near Future? Forestry: An International Journal of Forest Research, 96, 434–447. https://doi.org/10.1093/forestry/cpad009 (Crossref)

Leszczyszyn, E., Heräjärvi, H., Verkasalo, E., Garcia-Jaca, J., Araya-Letelier, G., Lanvin, J-D., Bidzińska, G., Augustyniak-Wysocka, D., Kies, U., Calvillo, A., Wahlströmh, M., Kouyoumji, J-L. (2022). The Future of Wood Construction: Opportunities and Barriers Based on Surveys in Europe and Chile. Sustainability, 14, 4358. https://doi.org/10.3390/su14074358 (Crossref)

Łacek P. & Starzyk A. (2023). Recycling of Building Materials: An Overview. Acta Scientiarum Polonorum. Architectura, 21 (3), 67–76. https://doi.org/10.22630/ASPA.2022.21.3.23 (Crossref)

Marcal Goncalves, M., Perez Cano, M. T. & Rosendahl, S. (2019). From Stone Masonry to Emigrant’s Mansions. Changes in Vernacular Architecture in Central Portugal. IOP Conference Series: Materials Science and Engineering, 603 (2), 022064. https://doi.org/10.1088/1757-899X/603/2/022064 (Crossref)

Mendonca, P. & Vieira, C. (2022). Embodied Carbon and Economic Cost Analysis of a Contemporary House Design Using Local and Reused Materials. Sustainable Futures, 4, 100100. https://doi.org/10.1016/j.sftr.2022.100100 (Crossref)

Monteiro, H., Freire, F. & Fernández, J. E. (2020). Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude. Energies, 13, 4145. https://doi.org/10.3390/en13164145 (Crossref)

Morgado, L., Correia Guedes, M., Gomes Ferreira, J. & Cruz, H. (2020). Método Para El Diseño Arquitectónico de Casas de Madera En Portugal. Informes De La Construcción, 72, e370. https://doi.org/10.3989/ic.73680 (Crossref)

Morton, S., Pencheon, D. & Bickler, G. (2019). The Sustainable Development Goals Provide an Important Framework for Addressing Dangerous Climate Change and Achieving Wider Public Health Benefits. Public Health, 174, 65–68. https://doi.org/10.1016/j.puhe.2019.05.018 (Crossref)

Nunes, L. J. R., Meireles, C. I. R., Pinto Gomes, C. J. & De Almeida Ribeiro, N. M. C. (2019). Socioeconomic Aspects of the Forests in Portugal: Recent Evolution and Perspectives of Sustainability of the Resource. Forests, 10, 361. https://doi.org/10.3390/f10050361 (Crossref)

Oliveira, M., Couto, J. P., Mendonça, P., Silva, M. & Reis, P. (2013). Low Cost Construction: State of the Art and Prospects for Using Structure Wood Apartment Buildings in Portugal. In P. J. Cruz (Ed.), Structures and Architecture: Concepts, Applications and Challenges (pp. 2168–2175). London: Taylor & Francis Group.

Onat, N. C. & Kucukvar, M. (2020). Carbon Footprint of Construction Industry: A Global Review and Supply Chain Analysis. Renewable and Sustainable Energy Reviews, 124, 109783. https://doi.org/10.1016/j.rser.2020.109783 (Crossref)

Palma, P., Gouveia, J. P. & Barbosa, R. (2022). How Much Will It Cost? An Energy Renovation Analysis for the Portuguese Dwelling Stock. Sustainable Cities and Society, 78, 103607. 10.1016/j.scs.2021.103607 (Crossref)

Quintana-Gallardo, A., Schau, E. M., Niemelä, E. P. & Burnard, M. D. (2021). Comparing the Environmental Impacts of Wooden Buildings in Spain, Slovenia, and Germany. Journal of Cleaner Production, 329, 129587. https://doi.org/10.1016/j.jclepro.2021.129587 (Crossref)

Rącka, I. & Khalil Ur Rehman, S. (2018). Housing Market in Capital Cities – the Case of Poland and Portugal. Geomatics and Environmental Engineering, 12, 75. https://doi.org/10.7494/geom.2018.12.3.75 (Crossref)

Radziszewska-Zielina, E. & Gleń, M. (2014). Studies of the Prefabricated Housing Construction Market in Poland. Selected Scientific Papers – Journal of Civil Engineering, 9, 13–26. https://doi.org/10.2478/sspjce-2014-0012 (Crossref)

Rybak-Niedziółka, K., Starzyk, A., Łacek, P., Mazur, Ł., Myszka, I., Stefańska, A., Kurcjusz, M., Nowysz, A. & Langie, K. (2023). Use of Waste Building Materials in Architecture and Urban Planning – A Review of Selected Examples. Sustainability, 15, 5047, https://doi.org/10.3390/su15065047 (Crossref)

Sano, S., Saito, N. & Boontharm, D. (2023). The Potential of Small Wooden-Frame Building in Aging Japan. Sustainability, 15, 3602. https://doi.org/10.3390/su15043602 (Crossref)

Schau, E. M., Niemelä, E. P., Niemelä, A. J., Alencar Gavric, T. A. & Šušteršič, I. (2022). Life Cycle Assessment Benchmark for Wooden Buildings in Europe. In Z. S. Klos et al. (Eds), Towards a Sustainable Future – Life Cycle Management (pp. 143–154). Cham: Springer International Publishing. (Crossref)

Sikkema, R., Styles, D., Jonsson, R., Tobin, B. & Byrne, K. A. (2023). A Market Inventory of Construction Wood for Residential Building in Europe – in the Light of the Green Deal and New Circular Economy Ambitions. Sustainable Cities and Society, 90, 104370. https://doi.org/10.1016/j.scs.2022.104370 (Crossref)

Silva, M., Mendonça, P. & Branco, J. (2012). Traditional Wooden Buildings in Portugal the Avieira House. Paper at the International Conference “Sustainable Environment in the Mediterranean Region: from Housing to Urban and Land Scale Construction”, Naples 12–14 February 2012.

Sousa, J., Bragança, L., Almeida, M. & Silva, P. (2013). Research on the Portuguese Building Stock and Its Impacts on Energy Consumption – An Average U-Value Approach. Archives of Civil Engineering, 59, 523–546. https://doi.org/10.2478/ace-2013-0029 (Crossref)

Starzyk, A., Donderewicz, M., Rybak-Niedziółka, K., Marchwiński, J., Grochulska-Salak, M., Łacek, P., Mazur, Ł., Voronkova, I. & Vietrova, P. (2023). The Evolution of Multi-Family Housing Development Standards in the Climate Crisis: A Comparative Analysis of Selected Issues. Buildings, 13, 1985. https://doi.org/10.3390/buildings13081985 (Crossref)

Stasiak-Betlejewska, R. & Potkány, M. (2015). Construction Costs Analysis and Its Importance to the Economy. Procedia Economics and Finance, 34, 35–42. https://doi.org/10.1016/S2212-5671(15)01598-1 (Crossref)

Stepien, A., Piotrowski, J. Z., Munik, S., Balonis, M., Kwiatkowska, M. & Krechowicz, M. (2022). Sustainable Construction – Technological Aspects of Ecological Wooden Buildings. Energies, 15, 8823. https://doi.org/10.3390/en15238823 (Crossref)

Sulaiman, C., Abdul-Rahim, A. S. & Ofozor, C.A. (2020). Does Wood Biomass Energy Use Reduce CO2 Emissions in European Union Member Countries? Evidence from 27 Members. Journal of Cleaner Production, 253, 119996. https://doi.org/10.1016/j.jclepro.2020.119996 (Crossref)

Švajlenka, J. & Kozlovská, M. (2023). Analysis processes of selected wooden buildings. AIP Conference Proceedings, 2928, 070009. https://doi.org/10.1063/5.0170364 (Crossref)

Tavares, V. & Freire, F. (2022). Life Cycle Assessment of a Prefabricated House for Seven Locations in Different Climates. Journal of Building Engineering, 53, 104504. https://doi.org/10.1016/j.jobe.2022.104504 (Crossref)

Tenório, M., Branco, J. M. & Silva, S. M. (2023). Application of a Prefabricated Wooden-Based System for Collective Buildings in a Four-Storey Portuguese Building. In F. Gaspar, A. Mateus (Eds), Sustainable and Digital Building (pp. 183–193). Cham: Springer International Publishing. (Crossref)

Terlikowski, W. (2022). Problems and Technical Issues in the Diagnosis, Conservation, and Rehabilitation of Structures of Historical Wooden Buildings with a Focus on Wooden Historic Buildings in Poland. Sustainability, 15, 510. https://doi.org/10.3390/su15010510 (Crossref)

Valyova, M., Parzhov, E., Hua, L. S. & Koynov, D. (2023). Utilization of Scots Pine (Pinus sylvestris L.) Timber with Defects in Production of Engineered Wood Products. Drvna industrija, 74 (1), 71–79. https://doi.org/10.5552/drvind.2023.0048 (Crossref)

Viholainen, N., Franzini, F., Lähtinen, K., Nyrud, A. Q., Widmark, C., Hoen, H. F. & Toppinen, A. (2021). Citizen Views on Wood as a Construction Material: Results from Seven European Countries. Canadian Journal of Forest Research, 51, 647–659. https://doi.org/10.1139/cjfr-2020-0274 (Crossref)

Viholainen, N., Kylkilahti, E., Autio, M., Pöyhönen, J. & Toppinen, A. (2021). Bringing Ecosystem Thinking to Sustainability-Driven Wooden Construction Business. Journal of Cleaner Production, 292, 126029. https://doi.org/10.1016/j.jclepro.2021.126029 (Crossref)

Viholainen, N., Kylkilahti, E., Autio, M. & Toppinen, A. A. (2020). Home Made of Wood: Consumer Experiences of Wooden Building Materials. International Journal of Consumer Studies, 44 (6), 542–551. https://doi.org/10.1111/ijcs.12586 (Crossref)

Vilčeková, S., Čuláková, M., Burdová, E. & Katunská, J. (2015). Energy and Environmental Evaluation of Non-Transparent Constructions of Building Envelope for Wooden Houses. Energies, 8, 11047–11075. https://doi.org/10.3390/en81011047 (Crossref)

Wang, L., Toppinen, A. & Juslin, H. (2014). Use of Wood in Green Building: A Study of Expert Perspectives from the UK. Journal of Cleaner Production, 65, 350–361. https://doi.org/10.1016/j.jclepro.2013.08.023 (Crossref)

Xu, H. (2022). Wuling Ganlan: Splendid Archi-Tectonic Legacy of Asian Wooden Architecture. Built Heritage, 6, 31, https://doi.org/10.1186/s43238-022-00079-5 (Crossref)

Youngs, R. L. & Hamza, M. F. (2016). Wood: History of Use. In S. Hashmi (Ed.), Reference Module in Materials Science and Materials Engineering (pp. 1–7). Oxford: Elsevier. (Crossref)

Zabalza Bribián, I., Valero Capilla, A. & Aranda Usón, A. (2011). Life Cycle Assessment of Building Materials: Comparative Analysis of Energy and Environmental Impacts and Evaluation of the Eco-Efficiency Improvement Potential. Building and Environment, 46, 1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002 (Crossref)

Statistics

Downloads

Download data is not yet available.
Recommend Articles