Main Article Content
Soil pollution is one of the world’s most debated and widespread environmental issues. In particular, oil spills pose a significant global threat, with an environmental impact only slightly below that of radioactive contamination. This study conducted laboratory tests on the granulometric composition and consistency limits of soil samples artificially contaminated with engine oils. Three different types of engine oils were added to the soils in proportions of: 2.5%, 5% and 10% by dry weight of the soil sample, respectively. The trends in changes of the parameters determined due to pollution were evaluated. The study included a comparative analysis of the results of studies on the parameters of polluted soils carried out in Polish and foreign scientific centres. For silty sand (siSa), the content of the clay fraction decreased from an initial 7% to a range of 1–3%. For clayey sand (clSa), the content of the clay fraction decreased from 13% to a range of 1–7%. The plastic limit (PL) was 13.24% for siSa and 16.42% for clSa. The tested soils contaminated with engine oil were classified as non-plastic. The liquid limit (LL) for siSa and clSa was around 21%. The LL of siSa decreased from 21% to 15% due to contact with all types of engine oils. For clSa, the LL decreased to a range of 10–14%, depending on the type of engine oil. The results of this study highlight the engineering importance of understanding soil behaviour under oil contamination, which is crucial for assessing the stability and safety of structures in contaminated areas and for designing effective remediation strategies.
Article Details
Akinwumi, I. I., Diwa, D. & Obianigwe, N. (2014). Effects of crude oil contamination on the index properties, strength and permeability of lateritic clay. Int. Journal of Applied Sciences and Engineering Research, 3 (4), 816–824.
Akpokodje, O. I., Juwah, H. O. & Uguru, H. (2022). Impacts of petroleum spills on geotechnical properties of soils: A review. Journal of Engineering Innovations and Applications, 1 (1), 1–6. (Crossref)
Al-Obaidy, N. K. & Shaia, H. (2019). Evaluation the geotechnical properties of oil-polluted soil from two selected areas in Thi-Qar Governorate-Iraq. University of Thi-Qar Journal, 14 (1), 17–30.
Azam, M. S., Xiao, Z., Mia, M. R., Rahman, M. M. & Zaman, T. (2022). Effects of Oil Contamination on the Geotechnical Properties of Clayey Soil. Journal of ICT, Design, Engineering and Technological Science, 6 (2), 8–14. https://doi.org/10.33150/JITDETS-6.2.2 (Crossref)
Bian, H., Liu, S., Cai, G., Chu, Y. & Tian, L. (2016). Effects of LNAPLs contamination on the basic properties of silty clay. In Geo-Chicago 2016 (pp. 345–354). Chicago: American Society of Civil Engineers. (Crossref)
Biswas, B., Qi, F., Biswas, J. K., Wijayawardena, A., Khan, M. A. I. & Naidu, R. (2018). The fate of chemical pollutants with soil properties and processes in the climate change paradigm – A review. Soil Systems, 2 (3), 51. (Crossref)
Casagrande, A. (1948). Classification and identification of soils. Transactions of the American Society of Civil Engineers, 113 (1), 901–930. (Crossref)
Czado, B., Korzeniowska-Rejmer, E. & Pietras, J. (2010). Analiza zmian nośności podłoża budowlanego w wyniku jego zanieczyszczenia substancjami ropopochodnymi na przykładzie gruntów piaszczystych. Górnictwo i Inżynieria, 2, 165–170.
Elsaigh, W. A. H. & Oluremi, J. R. (2022). Assessment of geotechnical properties of oil contaminated subgrade soil. Soil and Sediment Contamination: An International Journal, 31 (5), 586–610. (Crossref)
Haghsheno, H. & Arabani, M. (2022). Geotechnical properties of oil-polluted soil: a review. Environmental Science and Pollution Research, 29 (22), 32670–32701. (Crossref)
Hewayde, E., Abbas, M. & Kubba, Z. (2019). Influence of engine oil on geotechnical properties of cohesive soil. International Journal of Engineering Research and Technology, 12 (1), 33–41.
International Organization for Standardization [ISO], (2018). Geotechnical investigation and testing – Laboratory testing of soil. Part 12: Determination of liquid and plastic limits (EN ISO 17892-12).
Iwanicka, E., Janiszewska, S. & Koda, E. (2020). Remediacja i stabilizacja zanieczyszczonego podłoża pod istniejącymi budynkami-analiza przypadku. Acta Scientiarum Polonorum. Architectura, 19 (1), 63–71. (Crossref)
Izdebska-Mucha, D. (2005). Wpływ zanieczyszczeń ropopochodnych na wybrane geologiczno-inżynierskie właściwości gruntów spoistych. Przegląd Geologiczny, 53 (9), 766–769.
Izdebska-Mucha, D. & Korzeniowska-Rejmer, E. (2009). Wpływ zanieczyszczeń ropopochodnych na właściwości fizyczne gruntów stosowanych do budowy mineralnych barier uszczelniających składowiska odpadów. Czasopismo Techniczne Politechniki Warszawskiej, 11, 39–54.
Jia, Y. G., Wu, Q., Meng, X. M., Yang, X. J., Yang, Z. N. & Zhang, G. C. (2010). Case study on influences of oil contamination on geotechnical properties of coastal sediments in the Yellow River Delta. In Advances in Environmental Geotechnics: Proceedings of the International Symposium on Geoenvironmental Engineering in Hangzhou, China, September 8–10, 2009 (pp. 767–771). Berlin–Heidelberg: Springer. (Crossref)
Karthick, A., Roy, B. & Chattopadhyay, P. (2019). A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil. Journal of Environmental Management, 243, 187–205. (Crossref)
Kicińska, A., Pomykała, R. & Izquierdo‐Diaz, M. (2022). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73 (1), e13203. https://doi.org/10.1111/ejss.13203 (Crossref)
Korzeniowska-Rejmer, E. & Izdebska-Mucha, D. (2006). Ocena wpływu zanieczyszczeń ropopochodnych na uziarnienie i plastyczność gruntów spoistych. Inżyniera i Ochrona Środowiska, 9 (1), 89–103.
Korzeniowska-Rejmer, E., Motak, E. & Rawicki, Z. (1995). Wpływ zanieczyszczeń olejowych na stan techniczny podłoża gruntowego i budynku magazynowania paliw. Przegląd Budowlany, 10, 13–15.
Nartowska, E. (2023). The risk of contamination of the first aquifer in the central part of the Świętokrzyskie Voivodship (MHP-814 Piekoszów). Acta Scientiarum Polonorum. Architectura, 22, 58–67. (Crossref)
Nazir, A. K. (2011). Effect of motor oil contamination on geotechnical properties of over consolidated clay. Alexandria Engineering Journal, 50 (4), 331–335. (Crossref)
Osinubi, K. J., Eberemu, A. O., Bello, A. O. & Adzegah, A. (2012). Effect of fines content on the engineering properties of reconstituted lateritic soils in waste containment application. Nigerian Journal of Technology, 31 (3), 277–287.
Phougat, N. (2017). Geotechnical properties of contaminated soil. International Journal of Current Engineering Sciences, 6 (7), 141–148.
Polski Komitet Normalizacyjny [PKN], (2018). Geotechnical investigation and testing – Identification and classification of soil. Part 1: Identification and description (PN-EN ISO 14688-1).
Rajabi, H. & Sharifipour, M. (2019). Geotechnical properties of hydrocarbon-contaminated soils: a comprehensive review. Bulletin of Engineering Geology and the Environment, 78, 3685–3717. (Crossref)
Rakowska, J., Radwan, K., Ślosorz, Z., Pietraszek, E., Łudzik, M. & Suchorab, P. (2012). Usuwanie substancji ropopochodnych z dróg i gruntów. Józefów: Wydawnictwo Centrum Naukowo-Badawczego Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego Państwowego Instytytu Badawczego.
Surygała, J., Śliwka, E., Kołwzan, B. & Greinert, H. (2000). Zanieczyszczenia naftowe w gruncie. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
Swaroop, S. S. & Rani, V. (2015). Effect of Oil Contamination on Geotechnical Properties of Clayey Soil. International Journal of Engineering Research and Technology, 3 (29), 1–4.
Tong, L., Chen, W. S., Zheng, X. L. & Li, M. (2012). Effect of oil contamination on Atterberg limits of soil. Advanced Materials Research, 374, 336–338. (Crossref)
Tumanyan, A. F., Tyutyuma, N. V., Bondarenko, A. N. & Shcherbakova, N. A. (2017). Influence of oil pollution on various types of soil. Chemistry and Technology of Fuels and Oils, 53, 369–376. (Crossref)
Yang, M., Wang, B., Xia, Y., Qiu, Y., Li, C. & Cao, Z. (2024). Changing Soil Water Content: Main Trigger of the Multi-Phase Mobilization and Transformation of Petroleum Pollution Components – Insights from the Batch Experiments. Water, 16 (13), 1775. (Crossref)
Downloads
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.